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Media Buying
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Key Points

1 DSP buys traffic for advertisers
2 Decision of displaying ad at the fixed platform is
accepted by SSP via second price auction (lots
of DSP’s may take part)

3 DSP pays SSP the second price in case it won
the auction and the ad was displayed at the
platform
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Monetization Policy

Advertiser pays DSP fixed price by one of the
principle:

1 CPM (cost per mille)
for each displaying of the ad at the platform
(impression)

2 CPC (cost per click)
for each user’s click by the ad

3 CPA (cost per action)
for each specified user’s action (install of mobile
application, finish some game level etc.)
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From advertiser’s point of view CPM is the most
natural but simultaneously risky monetization
strategy.
CPC and CPA – attempt to shift the part of the risk
on the DSP.

Advertisers risk:
1 Inappropriate market audience
2 Fraudulent traffic
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Key Idea

DSP attempt of additional risk compensation –
Dynamic Bidding Strategy.

An impression price depends on how its risky
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Motivation

Recall {𝜉i , i ≥ 1} – ad traffic, C ∈ N – desired click
volume.
The ind(𝜉i) is an ad label: we assume ind(𝜉i) = 1 if
the i-th request leaded to click, 0 – otherwise

N(C ) = min
n

{︃
n :

n∑︁
k=1

1[ind(𝜉i) = 1] ≥ C

}︃
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B – advertiser’s camp budget and maxCPC –
maximal cost per click. Under condition traffic
“may provide” clicks, holds:

E
N(C )∑︁
k=1

maxCPC · P (ind(𝜉i) = 1) = B

How to interpret this probability?

P (ind(𝜉i) = 1) = P ( ind(𝜉) = 1| 𝜉 = xi)

xi – features characterise i-th ad bid
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To sum up the “fair price” issue deduces to the
posterior probability estimation of the positive class
membership

P ( ind(𝜉) = 1| 𝜉 = x)
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Problem Restrictions

1 High predictor computing speed
2 Active learning ability
3 High learning speed
4 Ability to parallel model training
5 High data dimension, high number of categoric
features

6 Unbalanced training sample
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Solutions

Method Accuracy Scalability Efficiency
Bayes’ naive × X X
Logic trees X × ×
Logistic × X X
Logistic, hash-trick X X X
stochastic gradient
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Hashing Trick

h : N → {1, ..., 2b}, 𝜉 : N → {−1, 1}

𝜑h,𝜉
i (x) =

∑︁
j : h(j)=i

𝜉(i) · xi , x ∈ Rn

Hashing kernel:

(x , x
′
)𝜑 ≡

2b∑︁
i=1

𝜑h,𝜉
i (x) · 𝜑h,𝜉

i (x
′
)
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Under these notations holds:

E(x , x
′
)𝜑 = (x , x

′
)

If in addition ||x || = ||x ′|| = 1:

D(x , x
′
)𝜑 = O

(︂
1
2b

)︂
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Adaptive Learning Rate

Stochastic gradient update:

wt+1 = wt − 𝜂t · ∇wℓ (wᵀ
t · xt , yt)

Here

ℓ(p, y) = log(1 + e−yp), y ∈ {−1, 1}
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Converges condition:

+∞∑︁
t=1

𝜂t = ∞,
+∞∑︁
t=1

𝜂2
t < +∞

“Optimal” learning rate:

𝜂t,i =
𝛼

𝛽 +
√︁∑︀t

s=1 g 2
s,i

gs = ℓ (wᵀ
s · xs , ys)
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Dynamic Balancing

wt+1 = wt − s(h) · x , h ∈ R+

For logistic loss function:

s(h) =
W (eh𝜂·xᵀx+yp+eyp

) − h𝜂 · xᵀx − eyp

y · xᵀx
Here W (z) – Lambert function:

∀z ∈ C : z = W (z) · eW (z)
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Model Valuation

Bidding model should provide an accurate estimation
of the posterior probability. Over estimation would
cause budget overruns. Under estimation would cause
low conversion delivery rate.

• Classic approach:
Interpret like binary classification model

• Typical metrics:
auROC, Log-Loss, etc.

• Problem:
We don’t measure direct accuracy of probability
estimators (classification thresholds)
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Solution
Partition of the sample hashing space:

X =
d⨆︁

j=1

Oj

Estimating accuracy of aggregated probabilities

P ( ind(𝜉) = 1| 𝜉 ∈ Oj)

might be performed via testing hypothesis of
coherence theoretic and empiric distributions:

P (𝜉 ∈ Oj | ind(𝜉) = 1)
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Solution: use Pearson’s chi-square modified test

H0 : Pj = P (j)
t , j = 1..d

H1 : Pj = Pconst , j = 1..d

Chi-square statistic:

𝜒2
d−1 = m ·

d∑︁
j=1

[︁
P (j)

t − P (j)
e

]︁2

P (j)
t

m = |{i : ind(𝜉i) = 1}|
Distribution of the chi-square statistic doesn’t depend
on the way of sample partition.
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Efficiency criterion statistic:

Ψd−1 =
𝜒2

d−1(P (·)
t )

𝜒2
d−1(Pconst)

Under consistency of the chi-square criterion holds
asymptotic behaviour:

H0 : Ψd−1 −→ 0, m → +∞

H1 : Ψd−1 −→ +∞, m → +∞
If Ψd−1 < 1 the dynamic model is better than static.
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Application

Based on QupleTech bidding history it was educated
40 logistic regression models by stochastic gradient
descent with adaptive learning rate and hashing-trick
features decoding by the principle:

• 80% training set
• 10% validation set
• 10% testing set

It were calculated aggregated model (theoretic) and
observed (empiric) probability measures for each
learning model by correspondent testing set.
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Q&A

Thank you for your attention!
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