The Bag of Words Torn Open: Instance Retrieval goes Deep

Al Ukraine 2016 Kharkiv, Ukraine

James Pritts

Center for Machine Perception Czech Technical University in Prague

Who are we?

Ondřej Chum Associate Professor

Giorgos Tolias Post-Doctoral candidate

Jiří Matas Professor

Filip Radenović PhD candidate

James Pritts PhD candidate

Goals

Introduce the Instance Retrieval Problem

- Compare two ways to learn an image encoding Bag-of-words (BoW) descriptor: ~1,000,000D vector
 - *Convolutional Neural Network (CNN)* descriptor 512D vector
- Demonstrate state-of-the-art retrieval performance

Part 1: The Instance Retrieval Task

Significant viewpoint and/or scale change Significant illumination change Severe occlusions Visually similar but different objects

Significant viewpoint and/or scale change
Significant illumination change
Severe occlusions
Visually similar but different objects

Significant viewpoint and/or scale change Significant illumination change

Severe occlusions

Visually similar but different objects

Significant viewpoint and/or scale change Significant illumination change Severe occlusions

Instance Retrieval Demo

<u>Click Here</u>

Notional Instance Retrieval System

Notional Instance Retrieval System

Part 2: The Bag of Words (BoW) representation

Bag of Words: Off-line stage

Keypoint Detection Local Appearance SIFT Description [Lowe'04] Keypoint descriptor mage gradient **Visual Vocabulary** graffiti Geom. Vocabulary x_1, y_1, B_1 Local Geometry **Visual Words** x_2, y_2, B_5 x_{3}, y_{3}, B_{3} $word_1, word_2, word_8, \dots$ word₉₄₈₅₃₄, word₉₉₈₁₂₅ x_N, y_N, B_N graffiti graffit

Quantization by K-Means

centres

Re-compute cluster centres as centroids

Quantization by Approximate K-Means

- + fast O(N log k)
- + reasonable quantization
- Can be inconsistent when ANN fails

Philbin, Chum, Isard, Sivic, and Zisserman – CVPR 2007 Object retrieval with large vocabularies and fast spatial matching

Quantization by Hierarchical K-means

Nistér & Stewénius: Scalable recognition with a vocabulary tree. CVPR 2006

Bag-of-Words Image Representation

Bag of Words : On-line Stage

BoW and Inverted File

BoW and Inverted File score = $\frac{\mathbf{q}^{\mathsf{T}}\mathbf{x}}{||\mathbf{x}||}$

BoW and Inverted File

Efficient (fast) Linear complexity (in # documents) Can be interpreted as voting

Efficient Scoring

Word Weighting

Words (in text) common to many documents are less informative - 'the', 'and', 'or', 'in', ...

 $idf_{\chi} = \log \frac{\# \text{ documents}}{\# \text{ docs containing } (\mathbf{x})}$

Images are represented by weighted histograms $tf_{\chi} idf_{\chi}$ (rather than just a histogram of tf_{χ})

Words that are too frequent (virtually in every document) can be put on a stop list (ignored as if they were not in the document)

Baeza-Yates, Ribeiro-Neto. Modern Information Retrieval. ACM Press, 1999.

Bag of Words : On-line Stage

Query Expansion

Results

New query

Chum, Philbin, Sivic, Isard, Zisserman: Total Recall..., ICCV 2007

Query Expansion: Step by Step

Query Image

Retrieved image

Originally not retrieved

Query Expansion: Step by Step

Query Expansion: Step by Step

The Bag of Words solution

Significant viewpoint scale change Significant illumination change Severe occlusions Visually similar but different objects

covariant local features, invariant descriptors color-normalized feature descriptors locality of the features, geometric verification Feature discriminability & geometric verification

****** Encoding is learned, but representation has many assumptions

Filip Radenović Giorgos Tolias Ondřej Chum

Center for Machine Perception, CTU in Prague

ECCV 2016

Filip Radenović Giorgos Tolias Ondřej Chum

Center for Machine Perception, CTU in Prague

ECCV 2016

CNN Image Retrieval

compact image descriptors Nearest Neighbor search

CNN Image Retrieval

compact image descriptors Nearest Neighbor search

CNN Learning (Fine-Tuning)

start with CNN trained for different but similar task (reasonable parameters) re-train with data relevant to your task

CNN Image Retrieval

compact image descriptors Nearest Neighbor search

CNN Learning (Fine-Tuning)

start with CNN trained for different but similar task (reasonable parameters) re-train with data relevant to your task

Bag of Words

state-of-the-art retrieval performance couples well with SfM

CNN Image Retrieval

compact image descriptors Nearest Neighbor search

CNN Learning (Fine-Tuning)

start with CNN trained for different but similar task (reasonable parameters) re-train with data relevant to your task

Bag of Words

state-of-the-art retrieval performance couples well with SfM

Unsupervised training data generation

no human interaction

CNN Image Retrieval

compact image descriptors Nearest Neighbor search

CNN Learning (Fine-Tuning)

start with CNN trained for different but similar task (reasonable parameters) re-train with data relevant to your task

Bag of Words

state-of-the-art retrieval performance couples well with SfM

Unsupervised training data generation

no human interaction

Hard Examples

hard **positives**

hard **negatives**

"Lots of Training Examples"

Large Internet photo collection

Convolutional Neural Network (CNN)

Off-the-shelf CNN

- Target application: classification
- Training dataset: ImageNet
- Architecture: AlexNet & VGG

Images from ImageNet.org

- Directly applicable to other tasks
 - Fine-grain classification

Images from ImageNet.org

Object detection

Images from PASCAL VOC 2012

Image retrieval

Annotations for CNN Image Retrieval

CNN pre-trained for classification task used for retrieval

[Gong et al. ECCV'14, Babenko et al. ICCV'15, Kalantidis et al. arXiv'15, Tolias et al. ICLR'16]

Fine-tuned CNN using a dataset with landmark classes

• NetVLAD: Weakly supervised fine-tuned CNN using GPS tags [Arandjelovic et al. CVPR'16]

We propose: automatic annotations for CNN training

Retrieval and SfM

[Schonberger et al. CVPR'15] [Radenovic et al. CVPR'16]

CNN learns from BoW – Training Data

Camera Orientation Known Number of Inliers Known

[Schonberger et al. CVPR'15] 7.4M images \rightarrow 713 training 3D models

Hard Negative Examples

Negative examples: images from different 3D models than the query Hard negatives: closest negative examples to the query Only hard negatives: as good as using all negatives, but faster

increasing CNN descriptor distance to the query

query

the most similar

naive hard negatives

top k by CNN

diverse hard negatives

top k: one per 3D model

Hard Positive Examples

Positive examples: images from the same 3D model as the query **Hard positives:** positive examples not close enough to the query

CNN Siamese Learning

CNN Siamese Learning

Contrastive vs. Triplet loss: Contrastive better with our data

Contrastive loss more strict, requires accurate training data Triplet loss less sensitive to inaccurate annotation

Whitening and dimensionality reduction

- 1. PCA_w PCA of an independent set of descriptors [Babenko et al. ICCV'15, Tolias et al. ICLR'16]
- L_w We propose to learn whitening using labeled training data and linear discriminant projections [Mikolajczyk & Matas ICCV'07]

Whitening and dimensionality reduction

- 1. PCA_w PCA of an independent set of descriptors [Babenko et al. ICCV'15, Tolias et al. ICLR'16]
- L_w We propose to learn whitening using labeled training data and linear discriminant projections [Mikolajczyk & Matas ICCV'07]
- 3. End-to-end Learning Performs comparable or worse than L_w, while slowing down the convergence

Whitening and dimensionality reduction

- 1. PCA_w PCA of an independent set of descriptors [Babenko et al. ICCV'15, Tolias et al. ICLR'16]
- L_w We propose to learn whitening using labeled training data and linear discriminant projections [Mikolajczyk & Matas ICCV'07]
- 3. End-to-end Learning Performs comparable or worse than L_w, while slowing down the convergence

(512D)

Nearest neighbors used on CNN descriptors Can use any fast NN search, like ANN

Experiments – datasets

- Oxford 5k dataset [Philbin et al. CVPR'07]
- Paris 6k dataset [Philbin et al. CVPR'08]
- Holidays dataset [Jegou et al. ECCV'10]

• 100k distractor dataset [Philbin et al. CVPR'07] Training 3D models do not contain any landmark from these datasets

• **Protocol:** mean Average Precision (mAP)

Experiments – Learning (AlexNet)

 Careful choice of positive and negative training images makes a difference

Experiments – Over-fitting and Generalization

 We added Oxford and Paris landmarks as 3D models and repeated fine-tuning

Only +0.3 mAP on average over all testing datasets

	Mathad		Б	Ox	f5k	Oxf	105k	Pa	r6k	Par	106k	Hol	Hol
	Method		D	$\mathtt{Crop}_\mathcal{I}$	${\tt Crop}_{\mathcal{X}}$	$\mathtt{Crop}_\mathcal{I}$	$Crop_{\mathcal{X}}$	$\mathtt{Crop}_\mathcal{I}$	$Crop_{\mathcal{X}}$	$\mathtt{Crop}_\mathcal{I}$	${\tt Crop}_{\mathcal{X}}$		101k
State-ot-the-art	Compact representations												
	mVoc/BoW [11]		128	48.8	_	41.4	_	_	_	_	_	65.6	_
	Neural codes [†] [14]	(\mathbf{fA})	128	—	55.7	—	52.3	—	-	—	_	78.9	—
	MAC^{\ddagger}	(\mathbf{V})	128	53.5	55.7	43.8	45.6	69.5	70.6	53.4	55.4	72.6	56.7
	CroW [24]	(\mathbf{V})	128	59.2	_	51.6	_	74.6	-	63.2	_	-	—
	\star MAC	(\mathbf{fV})	128	75.8	76.8	68.6	70.8	77.6	78.8	68.0	69.0	73.2	58.8
	\star R-MAC	(\mathbf{fV})	128	72.5	76.7	64.3	69.7	78.5	80.3	69.3	71.2	79.3	65.2
	MAC [‡]	(\mathbf{V})	256	54.7	56.9	45.6	47.8	71.5	72.4	55.7	57.3	76.5	61.3
	SPoC [23]	(\mathbf{V})	256	—	53.1	—	50.1	—	-	—	_	80.2	—
	R-MAC [25]	(\mathbf{A})	256	56.1		47.0	_	72.9	_	60.1		-	
	CroW [24]	(\mathbf{V})	256	65.4	—	59.3	_	77.9	_	67.8	_	83.1	—
	NetVlad [35]	(\mathbf{V})	256		· ~		_	—	67.7	—	_	86.0	—
	NetVlad [35]	(\mathbf{fV})	255		5 .	5	-	_	73.5		-	84.3	-
	* MAC	$(\mathbf{f}\mathbf{A})$	256		00.0	×0.0	58.0	68.9	72.2	54.7	58.5	76.2	63.8
NetVLAD 256D	* R-MAC	$(\mathbf{f}\mathbf{A})$	256	62.5	68.9	53.2	61.2	74.4	76.6	61.8	64.8	81.5	70.8
	* MAC	$(\mathbf{I} \mathbf{V})$	256	77.4	78.2	70.7	72.6	80.8	81.9	72.2	73.4	77.3	62.9
	* R-MAC	(\mathbf{IV})	256	74.9	78.2	67.5	72.1	82.3	83.5	74.1	75.6	81.4	69.4
	MAC [*]	(\mathbf{V})	512	56.4	58.3	47.8	49.2	72.3	72.6	58.0	59.1	76.7	62.7
VS.	$\begin{bmatrix} R-MAC & [25] \\ CnoW & [24] \end{bmatrix}$	(\mathbf{V})	512 519	00.9 68 9		01.0	_	83.0 70.6	_	75.7	_	×1 0	_
	1 MAC	(\mathbf{V})	512	70.7	80.0	03.4 79.0	75 1	19.0	- -	71.0	75.9	04.9 70 5	67.0
	\star MAC	$(\mathbf{I} \mathbf{V})$ $(\mathbf{f} \mathbf{V})$	512	77.0	80.0	60.2	74.1	82.8	02.9 85 0	74.0 76 4	77.0	79.5 82.5	71 5
	$[\star n-mAC \qquad (IV)] \frac{12}{12} (1.0 \ 00.1] \frac{09.2}{14.1} \frac{14.1}{33.8} \frac{35.0}{50.0} \frac{10.4}{17.9} \frac{17.9}{82.5} \frac{82.5}{11.5}$												
		(2.4.)	10	Exti	reme	short	codes	3					
	Neural codes' [14]	$(\mathbf{f}\mathbf{A})$	16	-	41.8	_	35.4	-	-	-	-	60.9	-
	* MAC	$(\mathbf{f} \mathbf{V})$	16	56.2	57.4	45.5	47.6	57.3	62.9	43.4	48.5	51.3	25.6
	* R-MAC	$(\mathbf{f} \mathbf{V})$	16	46.9	52.1	37.9	41.6	58.8	63.2	45.6	49.6	54.4	31.7
	Neural codes' [14]	$(\mathbf{C}\mathbf{I}\mathbf{I})$	32				46.7	-	-	- F1 C	-	72.9	41.0
	\star MAC	$(\mathbf{I} \mathbf{V})$	პ	6	9.4	2 P	59.5	63.9	69.5 67.4	51.0	56.3	62.4	41.8
	* R-MAC	$(\mathbf{I} \mathbf{V})$	32				55.1	63.9	07.4	52.7	00.0	08.0	49.0
		Re-rai	nkin	g(R)	and	query	expa	ansion	ı (QE)			
Concurrent work:	BoW(1M) + QE[6]		—	82.7	—	76.7	-	80.5	-	71.0		-	—
	BoW(16M) + QE [50]		—	84.9		79.5	_	82.4	_	77.3	_	-	_
Gordo et al. ECCV'16	$ \mathrm{HQE}(65\mathrm{k}) [8] $	1 (***	_	88.0	—	84.0	_	82.8	_		_	-	—
	R-MAC+R+QE [25]	$ (\mathbf{V}) $	512	77.3	_	73.2	-	86.5	-	79.8		-	_
	CroW + QE [24]	(\mathbf{V})	512	72.2	-	67.8	-	85.5	-	79.7	-	-	_
	* MAC+R+QE	$(\mathbf{I} \mathbf{V})$	512 512	85.0	85.4	81.8	82.3	86.5	87.0	18.8	79.6	-	_
	★ K-MAC+K+QE	$(1 \mathbf{V})$	512	82.9	84.5	77.9	80.4	85.6	86.4	78.3	79.7	-	_

Teacher vs. Student

Method	Oxf5k	Oxf105k	Par6k	Par106k		
BoW(16M)+R+QE	84.9	79.5	82.4	77.3		
CNN(512D)	79.7	73.9	82.4	74.6		
CNN(512D)+R+QE	85.0	81.8	86.5	78.8		

Our CNN with re-ranking (R) and query expansion(QE) surpasses its teacher on all datasets!!!

Teacher vs. Student

top 10 (correct | incorrect)

BoW

first incorrect at rank 127

Teacher vs. Student

top 10 (correct | incorrect)

CNN descriptors

Significant viewpoint scale change	lots of training data
Significant illumination change	lots of training data
Severe occlusions	lots of training data
Visually similar but different objects	lots of training data

CNN descriptors

Significant viewpoint scale change Significant illumination change Severe occlusions Visually similar but different objects lots of training data lots of training data lots of training data lots of training data

versus

Bag of Words

Significant viewpoint scale change Significant illumination change Severe occlusions Visually similar but different objects covariant local features, invariant descriptors color-normalized feature descriptors locality of the features, geometric verification Feature discriminability & geometric verification

CNN descriptor learning

- Proposed a method to generate the necessary "lots of training examples" without any human interaction
- Strong supervision for hard negative, hard positive mining, and supervised whitening
- Data and trained networks available at: <u>cmp.felk.cvut.cz/~radenfil/projects/siamac.html</u>
- For more details about the paper visit **Poster O-1A-01**

So Is the Bag-of-Words REALLY torn?

<u>Click Here</u>

So is the Bag-of-Words REALLY torn?

Not yet, but don't mess with tape ;)

Questions?

- Thanks for your attention
- Interested students should ask about our PhD program

Center for Machine Perception Czech Technical University in Prague <u>http://cmp.felk.cvut.cz</u>

Contact Jiri Matas or Ondrej Chum

