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Goals

= Introduce the Instance Retrieval Problem

= Compare two ways to learn an image encoding

Bag-of-words (BoW) descriptor:
~1,000,000D vector

Convolutional Neural Network (CNN) descriptor
512D vector

* Demonstrate state-of-the-art retrieval performance



Part 1: The Instance Retrieval Task



Instance Retrieval Challenges

» Significant viewpoint and/or scale change
Significant illumination change
Severe occlusions
Visually similar but different objects
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Instance Retrieval Demo

Click Here


http://ptak.felk.cvut.cz/G2F/index.html
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Part 2: The Bag of Words (BoW)
representation



Bag of Words: Off-line stage
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Quantization by K-Means

Iterate
—> —> o« o
" . [ ] [ ] .
Initialize cluster Find nearest cluster to each Re-compute cluster

centres datapoint (slow) O(N k) centres as centroids



Quantization by Approximate
K-Means

}}Late\
—> —_—
Initialize cluster : : Re-compute cluster
Find approximate nearest centres as centroids
centres cluster to each datapoint

+ fast O(N log k)
+ reasonable quantization
- Can be inconsistent when ANN fails

Philbin, Chum, Isard, Sivic, and Zisserman — CVPR 2007
Object retrieval with large vocabularies and fast spatial matching



Quantization by Hierarchical
K-means

+ fast O(N log k)

+ incremental construction

- not so good quantization

- often imbalanced

Nistér & Stewénius: Scalable recognition with a vocabulary tree. CVPR 2006



Bag-of-Words Image
Representation

Visual vocabulary
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Term-frequency (tf) — visual word D is twice in the image /
An image is represented by the histogram of

detected visual words




Bag of Words : On-line Stage @
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BoW and Inverted File
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BoW and Inverted File

score = >
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BoW and Inverted File

Efficient (fast)
Linear complexity (in # documents)
Can be interpreted as voting




Efficient Scoring
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Word Weighting

Words (in text) common to many documents

are less informative - ‘the’, ‘and’, ‘or’, ‘in’, ... °
* [
([
[ [
_ # documents . oo, o
idf, = log — e’ .’
# docs containing ) o ° °

Images are represented by weighted histograms tf, idfy
(rather than just a histogram of tf, )

features from all documents

Words that are too frequent (virtually in every document) can be put on a stop list
(ignored as if they were not in the document)

Baeza-Yates, Ribeiro-Neto. Modern Information Retrieval. ACM Press, 1999.
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Query Expansion >

Results

New query

Chum, Philbin, Sivic, Isard, Zisserman: Total Recall..., ICCV 2007
25



Query Expansion: Step by Step @

Query Image Retrieved image Originally not retrieved
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Query Expansion: Step by Step
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Query Expansion: Step by Step @
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The Bag of Words solution

Significant viewpoint scale change  covariant local features, invariant descriptors
Significant illumination change color-normalized feature descriptors
Severe occlusions locality of the features, geometric verification

Visually similar but different objects Feature discriminability & geometric verification

** Encoding is learned, but representation has many assumptions



' global max

CNN Image Retrieval Learns from BoW:
Unsupervised Fine-Tuning with Hard Examples
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CNN Image Retrieval Learns from BoW:
Unsupervised Fine-Tuning with Hard Examples

CNN Image Retrieval

compact image descriptors
Nearest Neighbor search

global max image
==) | pooling& | == 8
L2-norm descri ptor
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CNN Image Retrieval

compact image descriptors
Nearest Neighbor search

global max )
IIIIII = pLC;c_)Iing& ) de';:?iiior
CNN Learning (Fine Tunmg)

start with CNN trained for different but similar task (reasonable parameters)
re-train with data relevant to your task

Bag of Words

state-of-the-art retrieval performance
couples well with StM

Unsupervised training data generation

no human interaction

hard positives hard negatives

'%Tam\ﬁ
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“Lots of Training Examples”
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“Lots of Training Examples”

Manual cleaning of
the training data
done by Researchers

N Very expensive 5558 |
¢

T g™
7 amazon
mechanicalturk™ » III III
Artificial Artificial Intelligence

caido: gl
i Not accurate

Large Internet Expensive $% Convolutional Neural
photo collection Network (CNN)

4 N

Automated extraction
of training data

Very accurate

Free'y,



Off-the-shelf CNN

* Target application: classification
* Training dataset: ImageNet
* Architecture: AlexNet & VGG

Images from ImageNet.org

* Directly applicable to other tasks

Fine-grain classification Object detection Image retrieval

Images from PASCAL VOC 2012



Annotations for CNN Image Retrieval

* CNN pre-trained for classification task used for retrieval

Building class

* NetVLAD: Weakly supervised | spatially closest # matching |

fine-tuned CNN using GPS tags A. .A A.

* We propose automatic annotatlons for CNN training

Hard negatlves




Retrieval and SfM




CNN learns from BoW — Training Data

Camera Orientation Known
Number of Inliers Known

7.4M images > 713 training 3D models



Hard Negative Examples

Negative examples: images from different 3D models than the query
Hard negatives: closest negative examples to the query
Only hard negatives: as good as using all negatives, but faster

the most similar  naive hard negatives diverse hard negatives
CNN descriptor top k by CNN top k: one per 3D model




Hard Positive Examples

Positive examples: images from the same 3D model as the query
Hard positives: positive examples not close enough to the query

random from
query top1 by CNN top 1byBoW tob k by BoW

used in NetVLAD



CNN Siamese Learning

Convolutional Layers Pooling Descriptor
) global max Dx 1
Cpallt =) ) pooling m==) | CNN
/[ R) & L2-norm desc.
Pair Label 2 l
| 1-positive | *
MATCHING PAIR S—postve |, |

5 1 15

global max Dx1
—> pooling m=s) | CNN
& L2-norm desc.

Positive Convolutional Layers Pooling Descriptor




CNN Siamese Learning

Query Convolutional Layers Pooling Descriptor
global max Dx1
) pooling m==) | CNN
& L2-norm desc.
Pair Label 02 l

NON-MATCHING PAIR |o—emve] | = -

global max Dx1
—> pooling m==) [ CNN
& L2-norm desc.

Convolutional Layers Pooling Descriptor

Contrastive vs. Triplet loss: Contrastive better with our data

Contrastive loss more strict, requires accurate training data
Triplet loss less sensitive to inaccurate annotation




Whitening and dimensionality reduction

end-to-end learning post-processing

global max Dx1 optional
®» | pooling& | ® | CNN » whitening [ | . P .
dim reduction
L2-norm desc.

1. PCA, - PCA of an independent set of descriptors

2. L, —We propose to learn whitening using labeled
training data and linear discriminant projections
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Whitening and dimensionality reduction

end-to-end learning post-processing
global max Dx1 optional
®» | pooling& | ® | CNN » whitening [ | . P .
dim reduction
L2-norm desc.

1. PCA,— PCA of an independent set of descriptors

L, — We propose to learn whitening using labeled

training data and linear discriminant projections

3. End-to-end Learning — Performs comparable or
worse than L,, while slowing down the convergence



Efficient Scoring and Ranking

CNN descriptor encoding
(512D)

Nearest neighbors used on CNN descriptors
Can use any fast NN search, like ANN



Experiments — datasets

 Oxford 5k dataset ey

e Paris 6k dataset

* Holidays dataset

Training 3D models do not
100k distractor dataset contain any landmark from
these datasets

* Protocol: mean Average Precision (mAP)



Experiments — Learning (AlexNet)

 Careful choice of positive and negative training

images makes a difference

| Our learned whitening |

| random(top k BoW) + top 1 / model CNN |

top 1 BoW + top 1 / model CNN

top 1 CNN + top 1 / model CNN

|top 1 CNN + top k CNN |

| Off-the-shelf |

56.7

56.2

44.2

]

Oxford 5k

62.2

60.2

597‘

68.9

67.5

67.1
63.9
63.1[]
51.6

Paris 6k




Experiments — Over-fitting and Generalization

e We added Oxford and Paris landmarks as 3D
models and repeated fine-tuning

Only +0.3 mAP on average over all
testing datasets



State-of-the-art

NetVLAD 256D —

VS.

Our CNN 32D —___

Concurrent work:
[Gordo et al. ECCV’16]

_ ] Oxfbk | Oxfl05k | Par6k | ParlO6k | Hol | Hol
Method D
Cropt | Cropy | CropT | Cropy | Cropy |Cropa | Cropy | Cropy 101k
Compact representations
mVoc/BoW [11] 128/48.8) — (414} — | — | — | — | — |65.6] —
Neural codes’ [11] (fA)|128] — |55.7| — [52.3 - (78.9]
MAC* (V)|128]53.5|55.7(43.8 45.6 | 69.5|70.6| 53.4|55.4| 72.6 |56.7
CroW [21] (V)|128|59.2| — |51.6) — |74.6) — [63.2] — — —
* MAC (fV)|128 75.8 76.8/68.6/70.8 77.6 78.8|68.0/69.0|73.2 58.8
* R-MAC (FV)|128 72.5 76.7|64.3|69.7 78.5 80.3/69.3/71.2|79.3 65.2
MAC* (V)|256|54.7|56.9|45.6 |47.8|71.5|72.4|55.7/57.3|76.561.3
SPoC [27] (V)|256| — |53.1| — [50.1| — — - - |80.2] —
R-MAC [25] (A)|256|56.1| — |[47.0) — |72.9| — [60.1] — — -
CroW [21] (V)[256/65.4, — |59.3 — |T7.9] — |67.8) — |83.1] —
NetVlad [45] (V)|256 — - |67.7] — - |86.0] —
NetVlad [35] (f V25 m - - |73.5] — - |84.3] —
* MAC (FA)|256|( 51 58.068.9|72.2|54.7T|58.5|76.2 63.8
* R-MAC (FA)|256|62.5 68.9]53.2/61.2|74.4 76.6 61.8]64.8|81.5 70.8
* MAC (fV)|256 77.4 78.2|70.7|72.6 80.8 81.9|72.2|73.4|77.3 62.9
* R-MAC (fV)|256 74.9 78.2|67.5|72.1 82.3 83.5/74.1|75.6/81.4 69.4
MACH? (V)[512/56.4 |58.3/47.8|149.2|72.3|72.6/58.0|59.1|76.7 |62.7
R-MAC [27] (V)[512/66.9| — |61.6] — |83.0| — |75.7 - - -
CroW [21] (V)[512/68.2] — [63.2 — |79.6| — |7T1.0] — |84.9] —
* MAC (fV)[512 79.7 80.0|73.9|75.1|82.4 82.9|74.6|75.3|79.5 67.0
* R-MAC (fV)|512 77.0 80.1/69.2|74.1 83.8 85.0|/76.4|77.9|82.5 T1.5
Extreme short codes
Neural codes’ [11] (FA)[ 16| — [41.8] — [354] — | - | — | — [60.9] -
* AL (fV)| 16 56.2 57.4|45.5/47.6 57.3 62.9/43.4|48.5|51.3 25.6
* R-MAC (fV)| 16 46.9 52.1|37.9/41.6 58.8 63.2|/45.6/49.6|54.4 31.7
Neural codes' | 32 46.7) — | | | |T29] -
* MAC (fV)‘S’ m 5159.5 63.9 69.5/51.6/56.3/62.4 41.8
* R-MAC (fV)] 32 55.1 63.9 67.4|52.7|55.8|68.0 49.6
Re-ranking (R) and query expansion (QE)
BoW(1IM)+QE [0] — 82,7 — |76.7| — |80.5| - |71.0} - - -
BoW(16M)+QE [50] — 849 — |795] — 824 T3 - -
HQE(65k) [+] - |88.0] - |84.0 - |828| - - - — -
R-MAC+R+QE [25] (V)|512|77.3] — |73.2 — [86.5| — |79.8| - - =
CroW+QE [21] (V)[h12|72.2] — |67.8] — |85.5| — |79.7| — — -
* MAC+R+4+QE (fV)|512|85.0 85.4|81.8|82.3 86.5 87.0|78.8|79.6| — -
* R-MACHRAQE  (fV)[512|82.9 84.5|77.9|80.4|85.6 86.4|78.3|79.7| — -




Teacher vs. Student

" Method | xSk | Oxf10sk | Parck | ariosic

Bow(1eM)+R+QE 84,9 79.5 824 77.3

CNN(512D) 79.7 /3.9 824 746
CNN(512D)+R+QE  85.0 81.8 86.5 78.8

Our CNN with re-ranking (R) and query expansion(QE)
surpasses its teacher on all datasets!!!



Teacher vs. Student

top 10 (correct | incorrect)




Teacher vs. Student

query top 10 (correct | incorrect)




CNN descriptors

Significant viewpoint scale change lots of training data
Significant illumination change lots of training data
Severe occlusions lots of training data

Visually similar but different objects lots of training data



CNN descriptors

Significant viewpoint scale change lots of training data
Significant illumination change lots of training data
Severe occlusions lots of training data
Visually similar but different objects lots of training data

versus

Bag of Words

Significant viewpoint scale change  covariant local features, invariant descriptors
Significant illumination change color-normalized feature descriptors
Severe occlusions locality of the features, geometric verification

Visually similar but different objects Feature discriminability & geometric verification



CNN descriptor learning

* Proposed a method to generate the necessary
“lots of training examples” without any human
Interaction

 Strong supervision for hard negative, hard
positive mining, and supervised whitening

e Data and trained networks available at:
cmp.felk.cvut.cz/~radenfil/projects/siamac.html

* For more details about the paper visit Poster O-1A-01


http://cmp.felk.cvut.cz/~radenfil/projects/siamac.html

So Is the Bag-of-Words REALLY
torn?

Click Here


http://ptak.felk.cvut.cz/G2F/index.html

So is the Bag-of-Words REALLY
torn?

Not yet, but don’t mess with tape ;)



Questions?

* Thanks for your attention

* Interested students should ask about our PhD
program
Center for Machine Perception
Czech Technical University in Prague
http://cmp.felk.cvut.cz

Contact Jiri Matas or Ondrej Chum
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