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Image classification (mostly what you’ve seen)

http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf 2



Classification vs. Detection

http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf 3



Benchmarks

• PASCAL VOC 2007/2012

• ILSVRC

• MS COCO
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PASCAL VOC 2007/2012

20 classes:

• Person: person

• Animal: bird, cat, cow, dog, horse, sheep

• Vehicle: aeroplane, bicycle, boat, bus, car, 
motorbike, train

• Indoor: bottle, chair, dining table, potted 
plant, sofa, tv/monitor

Train/val size:

o VOC 2007 has 9,963 images containing 
24,640 annotated objects.

o VOC 2012 has 11,530 images containing 
27,450

http://host.robots.ox.ac.uk/pascal/VOC/
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ILSVRC (DET)

200 object classes 527,982 images

http://image-net.org/
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MS COCO

• 91 categories (80 available)
• 123,287 images, 886,284 instances

http://mscoco.org/
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Evaluation

• We use a metric called “mean 
average precision” (mAP) 

• Compute average precision (AP) 
separately for each class, then 
average over classes A detection 
is a true positive if it has IoU
with a ground-truth box greater 
than some threshold (usually 
0.5) (mAP@0.5) 

• Combine all detections from all 
test images to draw a precision / 
recall curve for each class; AP is 
area under the curve 
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Detection as Classification

• Problem: Need to test many positions and scales, and use a 
computationally demanding classifier (CNN) 

• Solution: Only look at a tiny subset of possible positions

http://cs231n.github.io/neural-networks-3/ Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 48 1 Feb 2016
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Region Proposals. Selective Search

J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, Selective Search for Object Recognition, IJCV 2013 
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Selective search detection pipeline

Selective search + SIFT + bag-of-words + SVMs
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R-CNN

• Regions: ~2000 Selective Search 
proposals 

• Network: AlexNet pre-trained on 
ImageNet (1000 classes), fine-
tuned on PASCAL (21 classes) 

• Final detector: warp proposal 
regions, extract fc7 network 
activations (4096 dimensions), 
classify with linear SVM 

• Bounding box regression to refine 
box locations 

• Performance: mAP of 53.7% on 
PASCAL 2010 (vs. 35.1% for 
Selective Search and 33.4% for 
DPM).

Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, CVPR 2014
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R-CNN pros and cons

• Pros 
• Accurate! 
• Any deep architecture can immediately be “plugged in” 

• Cons 
• Ad hoc training objectives 

o Fine-tune network with softmax classifier (log loss) 
o Train post-hoc linear SVMs (hinge loss) 
o Train post-hoc bounding-box regressions (least squares) 

• Training is slow (84h), takes a lot of disk space 
• 2000 convnet passes per image 

• Inference (detection) is slow (47s / image with VGG16) 

Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, CVPR 2014
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Spatial Pyramid Pooling Layer

In each candidate window, used a 4-level spatial 
pyramid:

• 1×1 
• 2×2
• 3×3
• 6×6

Totally 50 bins to pool the features. This 
generates a 12,800- d (256×50) representation 
for each window

K. Grauman and T. Darrell, “The pyramid match kernel: Discriminative classification with sets of image features,” in ICCV, 2005.
S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories,” in CVPR, 2006.
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SPP-net

ROIs from 
proposal 
method

Fully-connected layers

Forward whole image through ConvNet

“conv5” feature map of image

Spatial Pyramid Pooling layer

Input image

Classify regions with SVMs
Apply b-box regressors

He, K., Zhang, X., Ren, S., and Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. CoRR, abs/1406.4729v2, 2014
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What’s good about SPP-net?

Pascal VOC 2007 results

its realy faster…
He, K., Zhang, X., Ren, S., and Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. CoRR, abs/1406.4729v2, 2014
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What’s wrong with SPP'net?

• Inherits the rest of R-CNN’s 
problems

• Introduces a new problem: 
cannot update parameters 
below SPP layer during 
training

He, K., Zhang, X., Ren, S., and Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. CoRR, abs/1406.4729v2, 2014
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Trainable 
(3layers)

Frozen 
(13layers)



Fast R-CNN

• Fast test time, like 
SPP-net

• One network, trained 
in one stage

• Higher mean average 
precision than slow R-
CNN and SPP-net

R. Girshick. Fast R-CNN. arXiv:1504.08083, 2015 18



Fast R-CNN Results
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Fast R-CNN Problem
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Region proposal network
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~ 10 ms per image

S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal 
networks. In NIPS, 2015.



Faster R-CNN
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S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal 
networks. In NIPS, 2015.



Faster R-CNN Training
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http://cs231n.github.io/neural-networks-3/ Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 48 1 Feb 2016



Faster R-CNN Results
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Faster R-CNN Results MS COCO
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ResNet 101 + Faster R-CNN 



Object detection progress PASCAL VOC 2007
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ImageNet Detection 2013 - 2015
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Next trends

• Fully convolutional detection networks 
• You Only Look Once (YOLO)

• Single Shot Multibox Detector (SSD)
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You Only Look Once YOLO

• Divide image into SxS grid
If the center of an object 
falls into a grid cell, it 
will be the responsible 
for the object.

• Each grid cell predict:
• B-boxes
• Confidence scores
• Class probability

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. arXiv
preprint arXiv:1506.02640, 2015 29



YOLO Design

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. arXiv
preprint arXiv:1506.02640, 2015
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Fast R-CNN & YOLO

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. arXiv
preprint arXiv:1506.02640, 2015

Speed > 45 fps
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Limitations

• Struggle with small objects

• Struggle with different aspects and ratios of objects

• Loss function is an approximation

• Loss function threats errors in different boxes ratio at the same.
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Single Shot MultiBox Detector (SSD)
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W. Liu, D. Anguelov, D. Erhan, C. Szegedy, and S. E. Reed. SSD: single shot multibox detector. CoRR, abs/1512.02325, 2015



SSD vs YOLO Architecture
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W. Liu, D. Anguelov, D. Erhan, C. Szegedy, and S. E. Reed. SSD: single shot multibox detector. CoRR, abs/1512.02325, 2015



SSD Results Pascal
PASCAL VOC 2007

PASCAL VOC 2012
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SSD Results on MS COCO
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Sources

• R-CNN 

• Caffe + MATLAB : https://github.com/rbgirshick/rcnn

• Faster R-CNN

• Caffe + MATLAB:  https://github.com/ShaoqingRen/faster_rcnn

• Caffe + Python: https://github.com/rbgirshick/py-faster-rcnn

• Torch: https://github.com/andreaskoepf/faster-rcnn.torch

• TensorFlow: https://github.com/smallcorgi/Faster-RCNN_TF

• YOLO

• Darknet: https://github.com/pjreddie/darknet

• TensorFlow: https://github.com/gliese581gg/YOLO_tensorflow

• Caffe: https://github.com/xingwangsfu/caffe-yolo

• SSD

• Caffe: https://github.com/weiliu89/caffe/tree/ssd
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