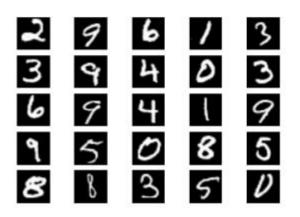
Object Detection Based on Deep Learning

Yurii Pashchenko

Al Ukraine 2016, Kharkiv, 2016

Image classification (mostly what you've seen)

- K classes
- Task: Assign the correct class label to the whole image

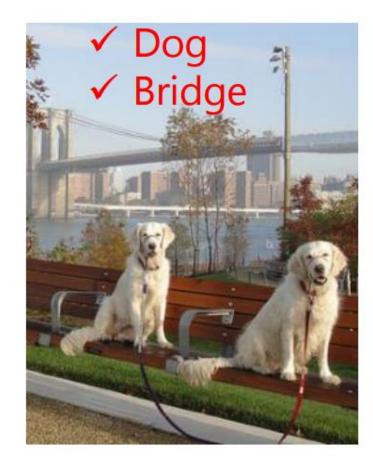


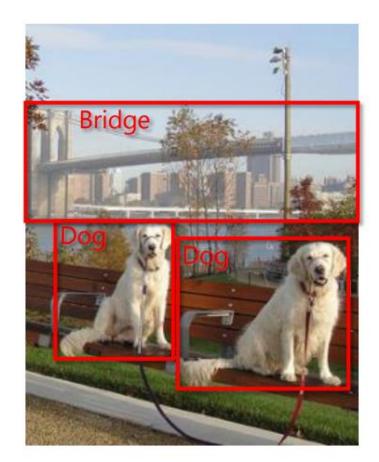
Digit classification (MNIST)

Object recognition (Caltech-101, ImageNet, etc.)

http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf

Classification vs. Detection





http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf

Benchmarks

- PASCAL VOC 2007/2012
- ILSVRC
- MS COCO

PASCAL VOC 2007/2012

The PASCAL Visual Object Classes Challenge 2007

20 classes:

- Person: person
- Animal: bird, cat, cow, dog, horse, sheep
- *Vehicle:* aeroplane, bicycle, boat, bus, car, motorbike, train
- *Indoor:* bottle, chair, dining table, potted plant, sofa, tv/monitor

Train/val size:

- VOC 2007 has 9,963 images containing 24,640 annotated objects.
- VOC 2012 has 11,530 images containing 27,450

http://host.robots.ox.ac.uk/pascal/VOC/

ILSVRC (DET)



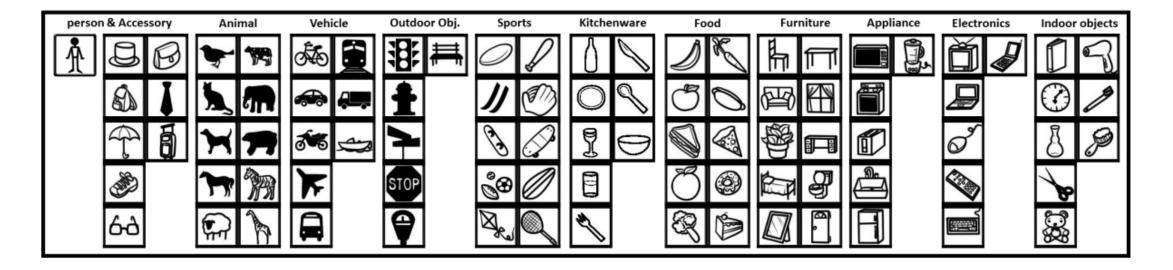
IM GENET

200 object classes 527,982 images

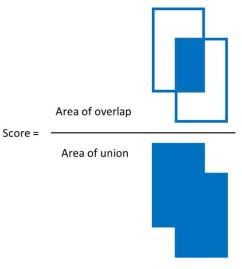
http://image-net.org/

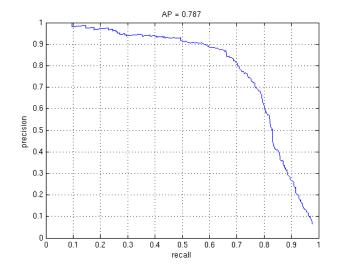
MS COCO

- 91 categories (80 available)
- 123,287 images, 886,284 instances



Evaluation





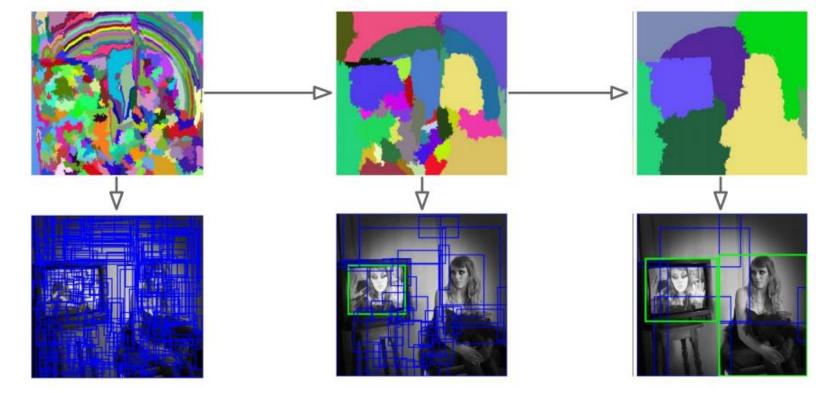
- We use a metric called "mean average precision" (mAP)
- Compute average precision (AP) separately for each class, then average over classes A detection is a true positive if it has IoU with a ground-truth box greater than some threshold (usually 0.5) (mAP@0.5)
- Combine all detections from all test images to draw a precision / recall curve for each class; AP is area under the curve

Detection as Classification

- **Problem**: Need to test many positions and scales, and use a computationally demanding classifier (CNN)
- Solution: Only look at a tiny subset of possible positions

Region Proposals. Selective Search

Bottom-up segmentation, merging regions at multiple scales



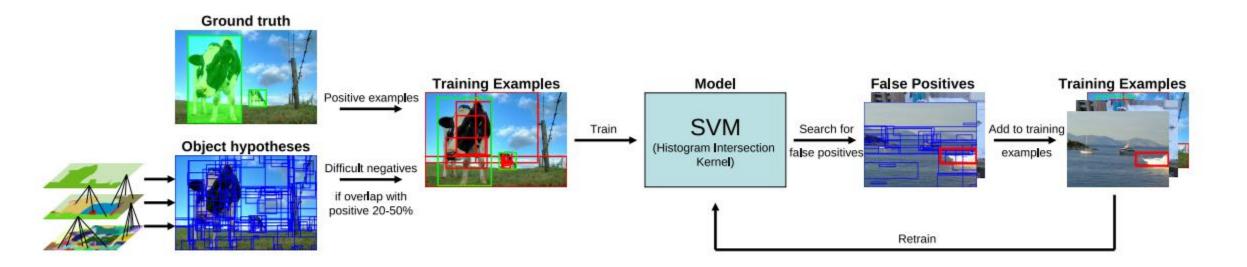
Convert

regions

to boxes

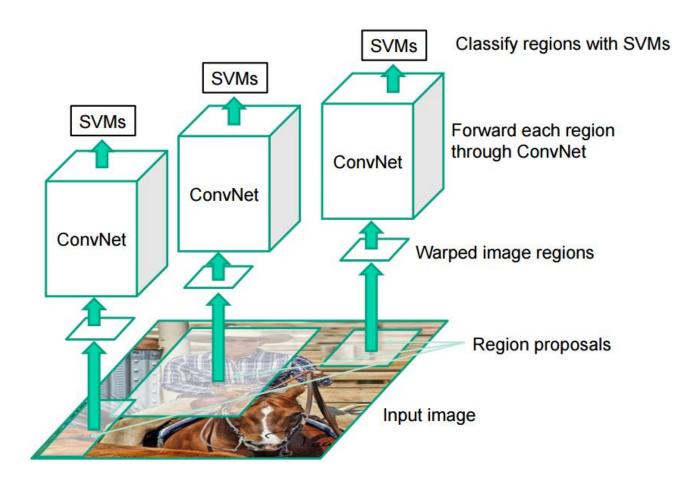
J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, Selective Search for Object Recognition, IJCV 2013

Selective search detection pipeline



Selective search + SIFT + bag-of-words + SVMs

R-CNN



- Regions: ~2000 Selective Search proposals
- Network: AlexNet pre-trained on ImageNet (1000 classes), finetuned on PASCAL (21 classes)
- Final detector: warp proposal regions, extract fc7 network activations (4096 dimensions), classify with linear SVM
- Bounding box regression to refine box locations
- Performance: mAP of 53.7% on PASCAL 2010 (vs. 35.1% for Selective Search and 33.4% for DPM).

Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, CVPR 2014

R-CNN pros and cons

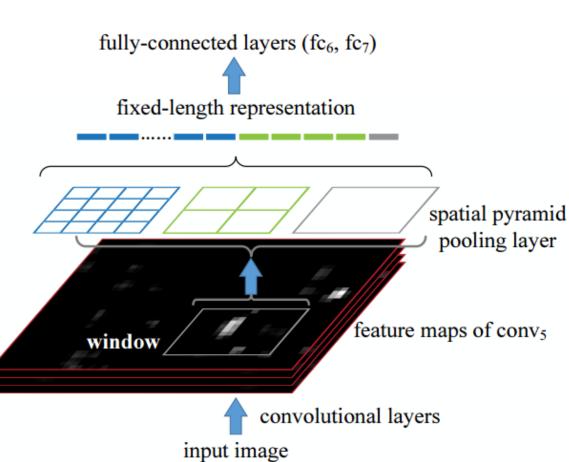
- Pros
 - Accurate!
 - Any deep architecture can immediately be "plugged in"
- Cons
 - Ad hoc training objectives
 - \circ Fine-tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hinge loss)
 - Train post-hoc bounding-box regressions (least squares)
- Training is slow (84h), takes a lot of disk space
 - 2000 convnet passes per image
- Inference (detection) is slow (47s / image with VGG16)

Spatial Pyramid Pooling Layer

In each candidate window, used a 4-level spatial pyramid:

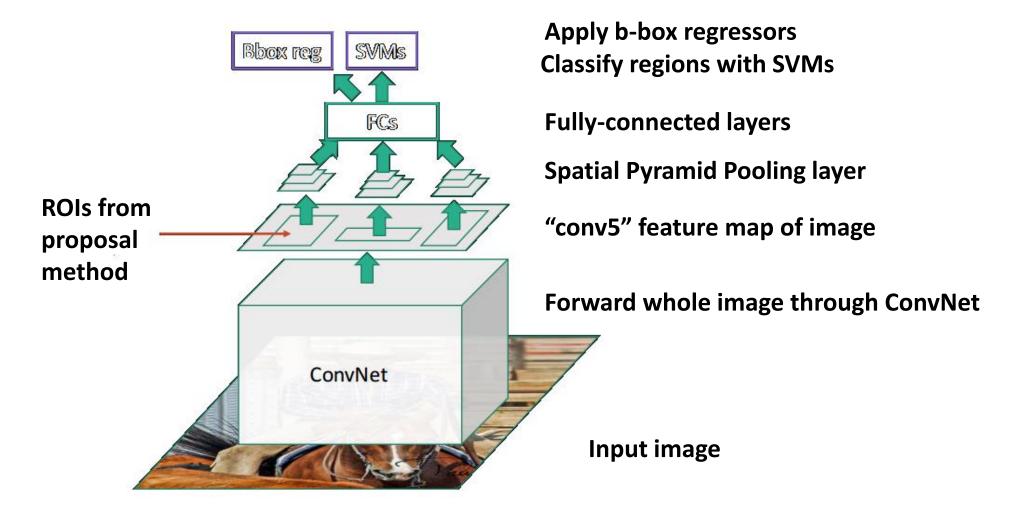
- 1×1
- 2×2
- 3×3
- 6×6

Totally 50 bins to pool the features. This generates a 12,800- d (256×50) representation for each window



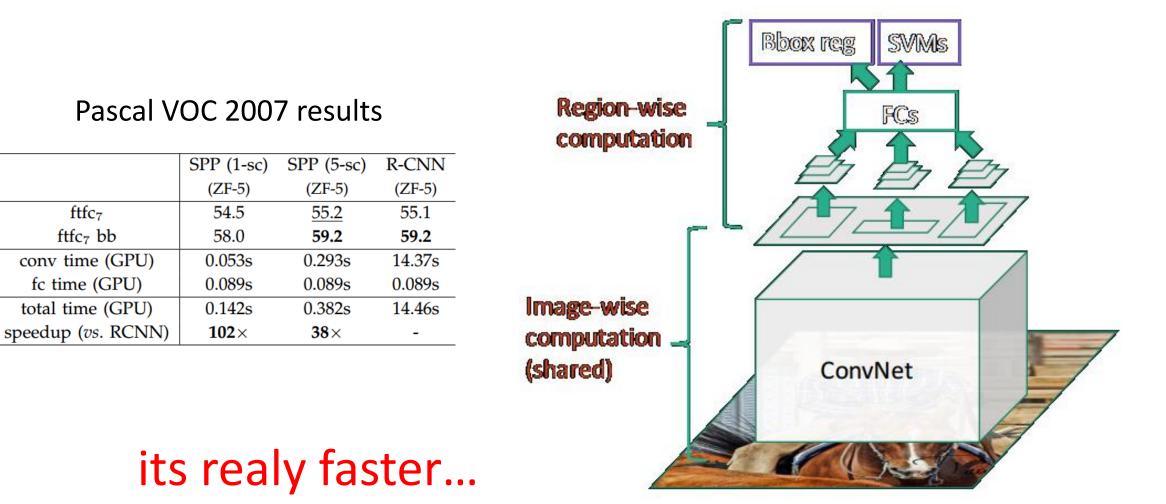
K. Grauman and T. Darrell, "The pyramid match kernel: Discriminative classification with sets of image features," in ICCV, 2005. S. Lazebnik, C. Schmid, and J. Ponce, "Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories," in CVPR, 2006.

SPP-net



He, K., Zhang, X., Ren, S., and Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. CoRR, abs/1406.4729v2, 2014

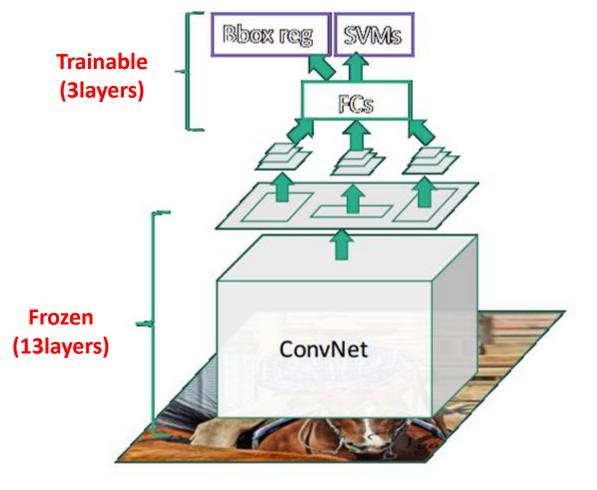
What's good about SPP-net?



He, K., Zhang, X., Ren, S., and Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. CoRR, abs/1406.4729v2, 2014

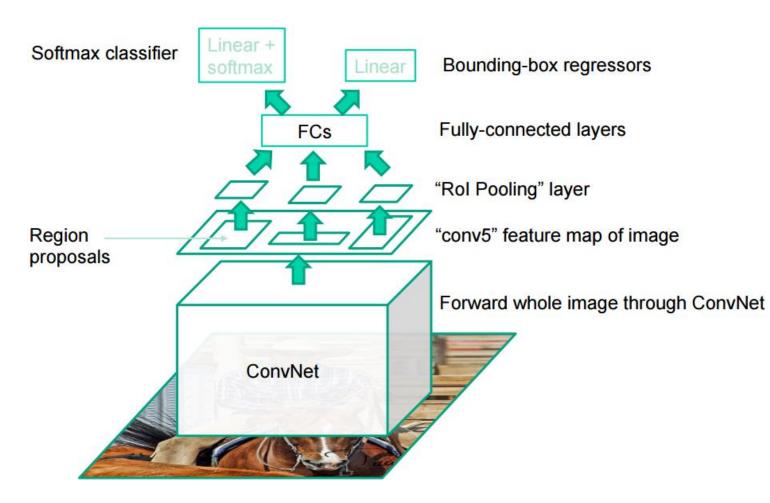
What's wrong with SPP'net?

- Inherits the rest of R-CNN's problems
- Introduces a new problem: cannot update parameters below SPP layer during training



He, K., Zhang, X., Ren, S., and Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. CoRR, abs/1406.4729v2, 2014

Fast R-CNN



- Fast test time, like SPP-net
- One network, trained in one stage
- Higher mean average precision than slow R-CNN and SPP-net

Fast R-CNN Results

		R-CNN	Fast R-CNN
	Training Time:	84 hours	9.5 hours
Faster!	(Speedup)	1x	8.8x
	Test time per image	47 seconds	0.32 seconds
FASTER!	(Speedup)	1x	146x
Better!	mAP (VOC 2007)	66.0	66.9

Using VGG-16 CNN on Pascal VOC 2007 dataset

Fast R-CNN Problem

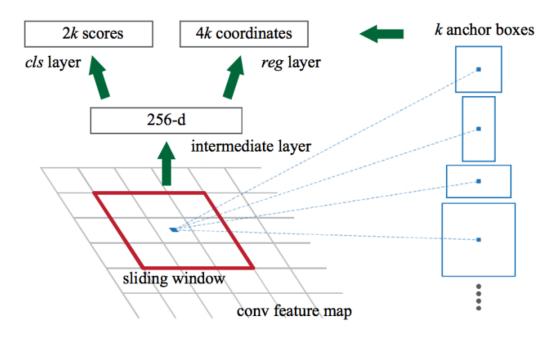
Test-time speeds don't include region proposals

	R-CNN	Fast R-CNN
Test time per image	47 seconds	0.32 seconds
(Speedup)	1x	146x
Test time per image with Selective Search	50 seconds	2 seconds
(Speedup)	1x	25x

Region proposal network

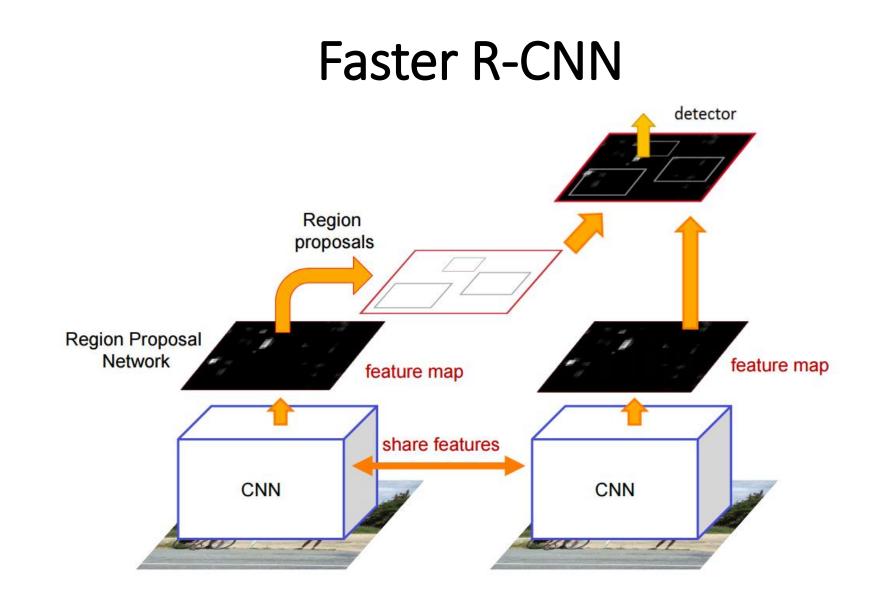
Slide a small window over the conv5 layer •

- Predict object/no object ٠
- Regress bounding box coordinates ٠
- Box regression is with reference to anchors (3 scales x 3 aspect ratios) ٠



~ 10 ms per image

S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 2015. 21



S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 2015.

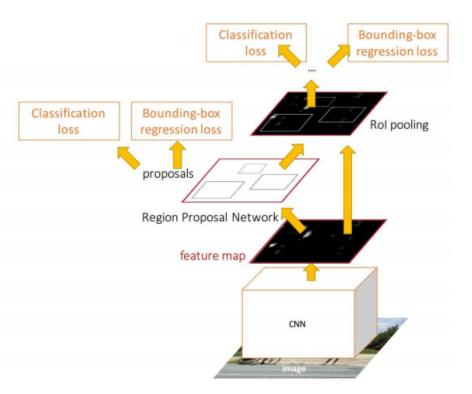
Faster R-CNN Training

In the paper: Ugly pipeline

- Use alternating optimization to train RPN, then Fast R-CNN with RPN proposals, etc.
- More complex than it has to be

Since publication: Joint training! One network, four losses

- RPN classification (anchor good / bad)
- RPN regression (anchor -> proposal)
- Fast R-CNN classification (over classes)
- Fast R-CNN regression (proposal -> box)



http://cs231n.github.io/neural-networks-3/ Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 48 1 Feb 2016

Faster R-CNN Results

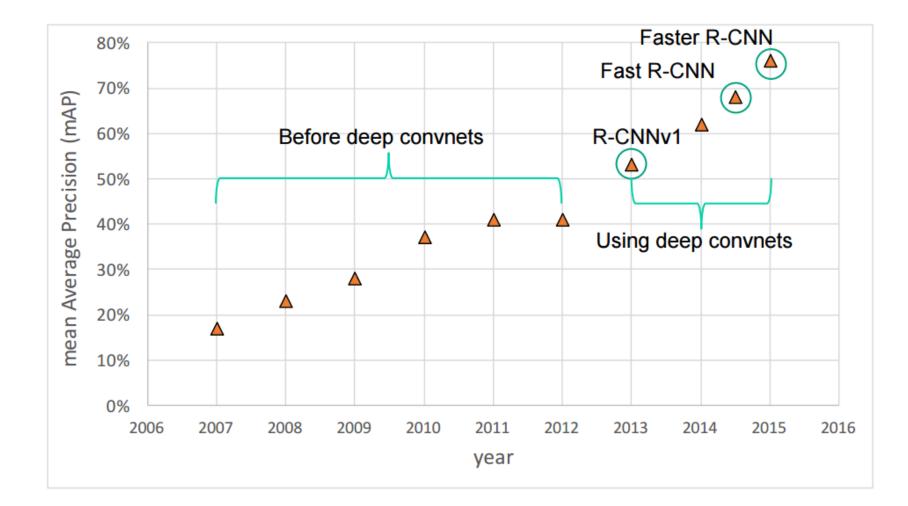
	R-CNN	Fast R-CNN	Faster R-CNN
Test time per image (with proposals)	50 seconds	2 seconds	0.2 seconds
(Speedup)	1x	25x	250x
mAP (VOC 2007)	66.0	66.9	66.9

Faster R-CNN Results MS COCO

ResNet 101 + Faster R-CNN

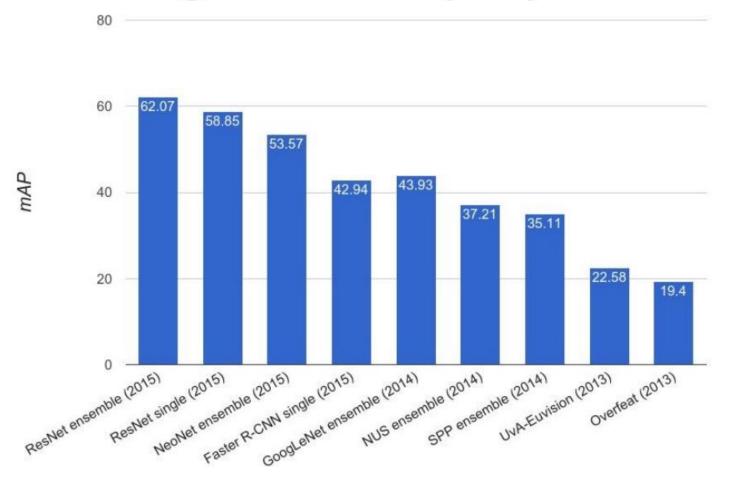
training data	COC	O train	COCO trainval			
test data	COC	CO val	COCO test-dev			
mAP	@.5	@[.5, .95]	@.5	@[.5, .95]		
baseline Faster R-CNN (VGG-16)	41.5	21.2				
baseline Faster R-CNN (ResNet-101)	48.4	27.2				
+box refinement	49.9	29.9				
+context	51.1	30.0	53.3	32.2		
+multi-scale testing	53.8	32.5	55.7	34.9		
ensemble			59.0	37.4		

Object detection progress PASCAL VOC 2007



ImageNet Detection 2013 - 2015

ImageNet Detection (mAP)

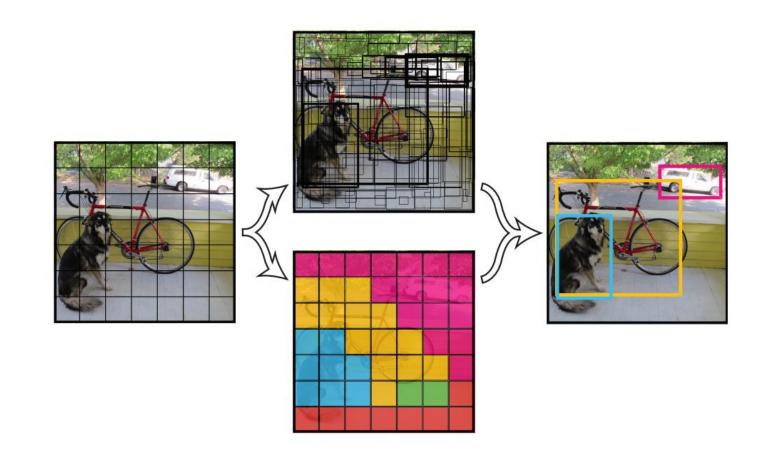


Next trends

• Fully convolutional detection networks

- You Only Look Once (YOLO)
- Single Shot Multibox Detector (SSD)

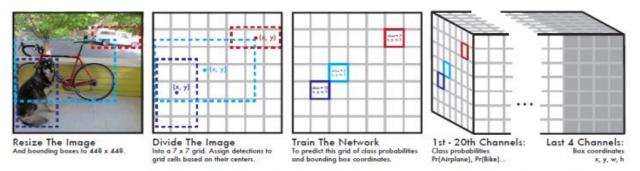
You Only Look Once YOLO



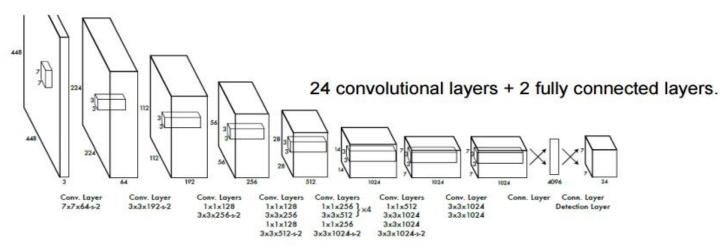
- Divide image into SxS grid If the center of an object falls into a grid cell, it will be the responsible for the object.
- Each grid cell predict:
 - B-boxes
 - Confidence scores
 - Class probability

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. arXiv preprint arXiv:1506.02640, 2015

YOLO Design



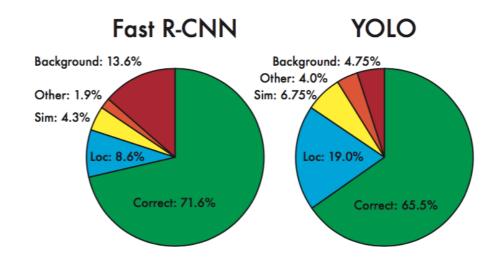
A regression problem to a 7724 tensor which encodes bounding boxes and class probabilities for all objects in the image.



J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. arXiv preprint arXiv:1506.02640, 2015

Fast R-CNN & YOLO

	mAP	Combined	Gain
Fast R-CNN	-	71.8	-
Fast R-CNN (2007 data)	66.9	72.4	.6
Fast R-CNN (VGG-M)	59.2	72.4	.6
Fast R-CNN (CaffeNet)	57.1	72.1	.3
YOLO	63.4	75.0	3.2



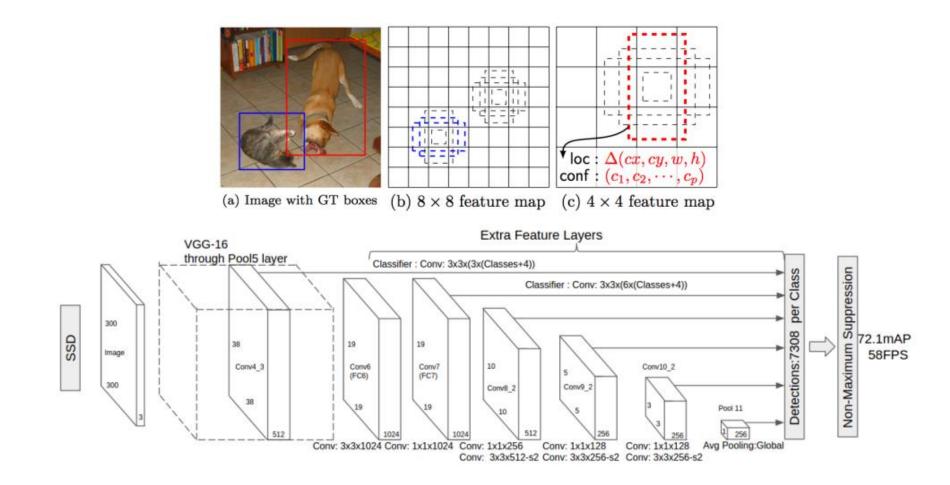
Speed > 45 fps

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. arXiv preprint arXiv:1506.02640, 2015

Limitations

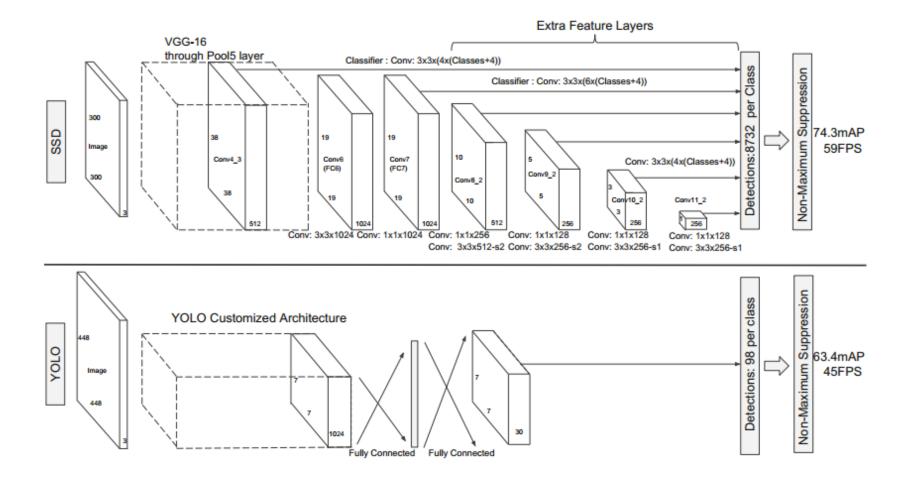
- Struggle with small objects
- Struggle with different aspects and ratios of objects
- Loss function is an approximation
- Loss function threats errors in different boxes ratio at the same.

Single Shot MultiBox Detector (SSD)



W. Liu, D. Anguelov, D. Erhan, C. Szegedy, and S. E. Reed. SSD: single shot multibox detector. CoRR, abs/1512.02325, 2015

SSD vs YOLO Architecture



W. Liu, D. Anguelov, D. Erhan, C. Szegedy, and S. E. Reed. SSD: single shot multibox detector. CoRR, abs/1512.02325, 2015

SSD Results Pascal

PASCAL VOC 2007

Method	mAP	FPS	# Boxes
Faster R-CNN [2](VGG16)	73.2	7	300
Faster R-CNN [2](ZF)	62.1	17	300
YOLO [5]	63.4	45	98
Fast YOLO [5]	52.7	155	98
SSD300	72.1	58	7308
SSD500	75.1	23	20097

PASCAL VOC 2012

Method	mAF	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv
Fast [6]	68.4	82.3	78.4	70.8	52.3	38.7	77.8	71.6	89.3	44.2	73.0	55.0	87.5	80.5	80.8	72.0	35.1	68.3	65.7	80.4	64.2
Faster [2] 70.4	84.9	79.8	74.3	53.9	49.8	77.5	75.9	88.5	45.6	77.1	55.3	86.9	81.7	80.9	79.6	40.1	72.6	60.9	81.2	61.5
YOLO	[5] 57.9	77.0	67.2	57.7	38.3	22.7	68.3	55.9	81.4	36.2	60.8	48.5	77.2	72.3	71.3	63.5	28.9	52.2	54.8	73.9	50.8
SSD30) 70.3	84.2	76.3	69.6	53.2	40.8	78.5	73.6	88.0	50.5	73.5	61.7	85.8	80.6	81.2	77.5	44.3	73.2	66.7	81.1	65.8
SSD50) 73.1	84.9	82.6	74.4	55.8	50.0	80.3	78.9	88.8	53.7	76.8	59.4	87.6	83.7	82.6	81.4	47.2	75.5	65.6	84.3	68.1

SSD Results on MS COCO

Method	data	Average Precision					
Method	data	0.5	0.75	0.5:0.95			
Fast R-CNN [6]	train	35.9	-	19.7			
Faster R-CNN [2]	train	42.1	-	21.5			
Faster R-CNN [2]	trainval	42.7	-	21.9			
ION [21]	train	42.0	23.0	23.0			
SSD300	trainval35k	38.0	20.5	20.8			
SSD500	trainval35k	43.7	24.7	24.4			

Sources

- R-CNN
 - Caffe + MATLAB : <u>https://github.com/rbgirshick/rcnn</u>
- Faster R-CNN
 - Caffe + MATLAB: <u>https://github.com/ShaoqingRen/faster_rcnn</u>
 - Caffe + Python: <u>https://github.com/rbgirshick/py-faster-rcnn</u>
 - Torch: <u>https://github.com/andreaskoepf/faster-rcnn.torch</u>
 - TensorFlow: <u>https://github.com/smallcorgi/Faster-RCNN_TF</u>
- YOLO
 - Darknet: <u>https://github.com/pjreddie/darknet</u>
 - TensorFlow: <u>https://github.com/gliese581gg/YOLO_tensorflow</u>
 - Caffe: <u>https://github.com/xingwangsfu/caffe-yolo</u>
- SSD
 - Caffe: <u>https://github.com/weiliu89/caffe/tree/ssd</u>

THANK YOU

Yurii Pashchenko george.pashchenko@gmail.com