APPLYING MACHINE LEARNING IN MOBILE DEVICE AD TARGETING

Leonard Newnham Chief Data Scientist

Introduction

- Who is LoopMe?
- What we do
- The problem we solve
- Data
- Predictive models
- Bidders
- Future Research
- Lessons Learned

Who is LoopMe?

LoopMe is the world's largest mobile video platform, lacksquarereaching over 1.25 billion consumers worldwide.

- London and Ukraine based start-up ullet
- Machine Learning is at the core of everything we do ullet

What We Do

Demand Side Platform

Supply Side Platform

Demand Side Platform - LoopMe

Ad Campaign

Contract with advertiser

- Number of impressions,
- Time period,
- Creative set,
- Country,
- White list
- Creative format,
- Optimisation goal: CPM, CPC, CPI

Example:

10,000 impressions per day for 28 days

The Problem we Solve

Within milliseconds:

- **Determine relevant creatives** \bullet
- Score these creatives against KPI to optimise \bullet
- Determine whether to respond
- Determine how much to bid \bullet
- Respond \bullet

How we do this

How do we do this:

- Collect data and build profiles
- Predictive models
- Bidding algorithms

Base Data

User id City Country Device width Device height Device OS version Device OS ISP IP Session depth Orientation Platform Publisher SDK Time App name

App company

Note: All user IDs are anonymous We don't store data if user opts out PII data not stored

loopMe

Augmented Data - Segments

Segments:	Three		
Male/ Female			
Age Range	• Sin		
Various game categories enthusiasts	lf		
Health and fitness fans	tł		
Messaging enthusiasts			
Productivity apps users			
Early adopters	• Pre		
etc			

ullet

Sources

nple rules: owns App A, B or C hen Computer Gamer

edictive models:

profile data ->

-> p(Female) = 0.82

Third party data: various commercial providers many small, free sources, eg weather.

Augmented Data - Location

Location with varying degrees of accuracy:

- **IP** Address ulletcity, country, region
- Wifi name lacksquareuniversity or business name
- **GPS** coordinates ulletnearby businesses and POIs Types of businesses visited

From all three:

Home/office location Frequent Traveller etc.

Augmented Data – App and Creative Attributes

App Data:

 App name and App category Categorization of users based on apps used

Creative attributes:

- Age rating child, teen, adult, everyone, etc.
- Interactive whether interactive or not
- Audio has audio
- Type of content video, banner, pre-roll, click-to-play, etc.

Data: Example Profile

logme

Start typing devic	ce identifier	
01cd410c-0611-4a	2c-9171-92a8f0ba4cbd	
03761a1e-4906-42	0d-bace-3365669786aa	
03ea9e88-0a37-43	12-9321-a011460d0ee1	
0330c5df-cac4-47f	a-b7b2-7682a2d6c575	
01dd85ec-8912-4ft	04-9a42-85091c406a75	
03bcc1a6-846f-418	2-aa79-e26b62cd3c2f	
02fb6bff-d3be-4c7	8-827c-f4b8b663fc93	
0398f543-1332-400	s8-b8a2-04edced9ef82	
01cd4108-c67e-46	1c-9be8-5209c25b484a	
00d740ee-59e4-42	38-afd4-e165e59ab67b	
04d9e4a5-01fd-42f	9-ba0f-24e1ea705c4d	
04ca6ee7-8431-4a	c8-aff7-2ee6202200e3	
00d7412a-3596-40	c5-9d0e-af6c9fd15c36	
03CEB314E78E4E5	548591E27D73C87A19	
017dc890-2d45-4a	42-be09-a03554473c1b	
04d9e49c-b73d-49	80-9539-af9871395464	
01cd40c6-57b0-4e	5d-b191-4b8df1a41566	
0446FD0E-9D6F-4	CFA-A457-ED6EDC44D4C5	
000b96e2-200e-40	0f-a3d6-57bae2e63d09	
00677fa2-cd0e-438	84-95fc-fb2c22ea9bc8	
030d4770-ae48-4e	01-9425-f00ae6c89fa2	
02cd1e3a-dfef-45b	4-bd3f-7e45c4fbafdc	
03d3776f-0376-4b	e7-b73d-7103ca5bcf2a	
CC0fCwWBp1p5	HcuHmqSTpcmQ	
0114d85d-8d43-49	ae-9062-1e2254201cdc	
023c3c8d-b3a4-40	8d-9bf8-d27f13b9fc73	

02b5ece08bd4cb4bb3dd366d40626de0d0fedfb9

App categories App genres Installed Apps

Q

Content Age Rating Keywords

Visited Sites Channels API Names Exchanges Cellular home ip Cable home ip Cable home ip Cable home isp ISP Names Wifi Names Geo/Location

Home country Home region Home city Home zip Hard traveler Visited countries Visited locations

-23.513613,-46.436603

Time: 2016-05-05T09:26:15.000Z; App: 15876

-23.513576,-46.436611

Time: 2016-05-03T23:45:16.000Z; App: 15876

-23.509518,-46.435055

Time: 2016-05-03T20:41:23.000Z; App: 15876 Time: 2016-05-03T19:14:38.000Z; App: 15876 Time: 2016-05-03T16:01:08.000Z; App: 15876

CONTRACTOR CONTRACTOR AND A DECK AND A DECK

Data Growth

Data: Segments

Turning raw data into useful data

We Match Campaigns to People

Of course, it is not always this easy... many dozens of factors involved

However, we do need to model interactions

Campaign A appeals to Person Type X Campaign B appeals to Person Type Y

And do it in real-time

There are several ways to do this...

Single simple model, eg logistic regression

- Learns weight for each binary feature
- Problem

 Cannot easily learn
 campaign A appeals to men
 campaign B appeals to women

One model for each campaign

- Now we learn exactly what type of people campaigns A and B appeal to.
- Problems:
 - 1. takes a long time to get sufficient data for a new campaign
 - 2. No learning is transferred to new campaign
 - 3. Learning common to all campaigns is learned multiple times
- or a new campaign aign

Single Model with interaction features between campaign and other variables

New features: campaign=A AND gender=M, campaign=A AND gender=F,...

- Now we learn common learning just once and efficiently
- We can learn campaign A appeals to men and campaign B appeals to women
- Problems Much learning lost when a campaign is terminated and replaced by similar one

Single Model with interaction features between campaign features and other variables

say:

campaign A is for tennis rackets campaign B is for tennis balls

Add attribute to a campaign of product type

If campaign B is replaced by campaign C, also sporting product -> much learning common to all sporting products transferred

Problems \bullet

We get a lot of features. Easily >1 million for real application

-> problem with noise.

both sporting products

Factorisation Machine

• Learn

bias

- 1-way interactions
- 2-way interactions and factorise these

Have all interactions between campaign features and other variables

Result: manageable model size

LibFM Performance

Bidding algorithms

- Ad Exchanges run second price auctions
- For CPC cost per click, a simple strategy •

Expected return = p(click) * CPC Bid this amount

Total budget and campaign lifetime mean this is ulletnot optimal...

Bidding algorithms

Currently experimenting with different bidder types. Open area for research

CPM chart

2016.02025.02026.02026.02026.02026.02026.02026.02015.02015.02015.02016.02015.02016.02015.02016.02016.02016.02016.02015.02016.02015.02016.02015.02016 Date

CPC chart

2016.02025.02026.02026.02026.02026.02026.02026.02015.02015.02015.02015.02015.02016.02016.02016.02016.02016.02015.02005.02005.02005.02005.02005.02005.02005.02 Date

0

Future Research

S10

Future Research Areas

Digital fingerprinting

- where there is no persistent device ID
- mobile web

Changing behaviour

- How do we target the individuals where we can change behaviour?
- Not just those who click the most
- Low Frequency Events
 - beyond clicks and installs
 - advertisers are interested in people taking actions

Changing Behaviour

- Traditional "response" models have a tendency to direct resources towards customers who would have bought anyway
- This often results in strong models but comparatively few incremental sales
- The customers who spend most after being subject to a marketing intervention are *not necessarily* the ones whose spending increases most as a result of that intervention

Purchase probability if not treated

LESSONS Learned

Concurrent and Persistent Control Groups

First time visitor seen, randomly assign to ulletcustomer group, typically:

90% AI group – always receive best prediction of AI 10% baseline group – business-as-usual, served without using AI

- Concurrent control groups give the most accurate measure of uplift ulleteliminates errors due to changes over time
- Uplift = AI performance / baseline performance ullet

Logp Me: Ad Balance: \$138,240.85			Campaigns	Inventory	Reports	Adops	•
Reports							
Campaigns						Filters	÷
Custom * 2015-12	-14 - 2015-12-18 Day			C	🖮 Graph	I Tab	ole
Ad Impressions 655	.978 🗢 baseline CTR, % 🗢	🗢 baseline CTR, % 👒 CTR, %				10	
Clicks 48	,122						
O VR, %	1.37					8	
CTR, %	6.00	••••••••••••••••••••••••••••••••••••••				6	
baseline CTR, %	5.21 ¹ / ₄					Percer	
Conversions	6	2				4	
Conversion Rate, %	0					2	
Ad Spend, \$ 5,87	1.52						
Profit, \$ 4,50	46.78 14 Dec 15 Dec 16 Dec		17 Dec		18 D	ec O	

Measure Everything

Data Dashboard

Overall Statistics

... Model features

- **T** Filters History
- ▼ Bayesian Optimization
- 🛃 Data Workflow

new

<

<

<

Video-model: Log Loss

Model performance

Install-model: Log Loss

Visualisation

Improved Visualisation:

- Al uplift
- Al audience insights lacksquare
- What AI has learned \bullet

Lessons Learned

- Use concurrent control groups •
- Measure everything • dashboard pages for various views of the system
- Visualisation of results •
- Investigate every issue •
- Don't rely only on high level metrics like log-loss • Look at the detail as well

THANK YOU

leonard@loopme.com

