

Advanced Indoor Navigation

I.M. Gorovyi CEO at It-Jim, PhD, signal and image processing

AI UKRAINE'16

III International conference on practical use of Artificial Intelligence and Data Science

OUTLINE

- Introduction to Navigation
- User Location in Buildings
- Indoor navigation: Tracking and Routing
- Real Scenarios and Experimental Results
- Conclusions and Future Work

What is Navigation?

1) Determine your location

2) Indicate the route

Global Positioning System (GPS)

- Provides positioning and navigation services
- There are currently 72 satellites (Feb 2016)

GPS principle

• We need to receive signals from at least 3-4 satellites

GPS: Weak Points

The more sky view, the more accuracy one can get

GPS does not work in buildings

INDOOR NAVIGATION

Indoor Navigation: Interesting Use Cases

Museum

High-level parking

Airport

Heat map

Possible sources

Examples of Beacons

BLE – Bluetooth Low Energy

Mobile SDK

Beacon Parameters and Package Structure

	Name	Data format	Range	-		
	Set UUID	16 BYTE	16bytes of data			
	Set Major	UINT 16	2bytes of data			
	Set Minor	UINT 16	2bytes of data	6cm		
	Set Name character	20 BYTE	20 BYTE			
	Set contact	BOOL	NO -YES			
	Set Broadcast Interval	UINT 16	0-1600			
	Set measured power	UINT8	0~-129			
	Connect/disconnect	BOOL	NO~YES			
	Password paring	UNIT 12	"654321"(ASCII)			
	Temperature and humidity ON/OFF button	1 Byte	1 BYTE			
Temperature and humidity read		1 Byte	1 BYTE			
	Minor 1 Minor 2	Minor X Mi	nor 1 Minor 2 Mi	nor X		
Major 1			Major 2			
	Proximity UUID					

Sky beacons

Indoor Positioning: Fingerprinting

Principle of fingerprinting

Indoor Positioning : Trilateration

User Location in Buildings

High-Level Description of User Location Algorithm

Beacons locations

RSSI from Beacons

RSSI – received signal strength indicator

Example of RSSI from 3 beacons

- Fluctuations are very high
- RSSI is sensitive to environment

Range vs RSSI: Propagation Models

- All electromagnetic waves demonstrate inverse-square relationship between RSSI and distance
- Difference between transmitted and received power is described via "path loss"
- Typically d0 is set to 1m
- Parameter n depends on environment

[1] Indoor Location Tracking Using Received Signal Strength Indicator By Chuan-Chin Pu, Chuan-Hsian Pu and Hoon-Jae Lee DOI: 10.5772/10518

higher RSSI not always better

 P_r

$$P_r \propto \frac{1}{d^2}$$

 $P_{(d0)}$

Multilateration

Trilateration vs Multilateration (Simulation)

Application of **Trilateration** for 3 beacon signals with the greatest power

Application of Multilateration

Calibration Procedure

Beacons are different

Calibration principle

- tx_power = measurement of rssi on distance of 1m from a beacon → obtaining a statistical sample → averaging.
- 2. Path loss exponent n = rssimeasurement at several fixed distances from a beacon \rightarrow comparison with the theoretical values \rightarrow calculation of n to "adjust" the calibration curve to experimental data

Example of adjusted calibration curves (rssi is measured at 1.5, 3 and 5 m from each beacon)

Calibration Effect

Estimated user location (static position)

Effect of Beacon Location Error (Simulation)

Effects of errors in beacon coordinates up to about: ±0,3 m (case **a**), ±1 m (case **b**), ±1.5 m (case **c**)

Indoor Navigation: Tracking and Routing

Indoor Navigation:Required Inputs

Building Map

User should know only about map!

• We need to know locations of beacons

Black box

Building Map and Mask

• We can mark the allowed areas with simple mask

Building map

Binary mask

Possible user locations are determined

Map and Graph for Routing

Building map

Mask Skeletonization and Graph Extraction

Mask

Mask skeleton

- Thinning algorithm can be applied
- Graph is easily obtained from skeleton
- In the case of large maps we really can save time

Geodesic Distance

Geodesic distance is determined as a shortest distance between the given pair of pixels within the image mask

Shortest path can be extracted directly from the mask!

Mobile Sensors and Orientation

Earth coordinate system

gData – Gravity sensor data mData – Magnetometer data return – Rotation Matrix

return – **Roll, Pitch** and **Azimuth** angles

Filtering of Sensor Data Example

Magnetometer sensor data

Filtering effect

Fluctuations in sensors data affect on data augmentation quality

Sensors are crucial for user navigation

Real Scenarios and Experimental Results

System Setup

3) We are ready!

iBeacon and Eddystone

- Developed by Apple.
- Has deep integration with the iOS Works out of the box with CoreLocation framework.
- Broadcasts 1 advertising packet (UUID, Major and Minor)

- Developed by Google and open to extension
- Works on Android and iOS.
- There are a lot of manufactures and SDKs available for both mobile platforms.
- Broadcasts **3 advertising packets** (frame types):
 - Eddystone-UID (similar to iBeacon)
 - Eddystone-URL
 - Eddystone-TLM

Configuration Tool

🚱 🚱 😫 💝 🖓 🗇 🖿 📖 🖓 🕴 🛎	🚯 🤶 48% 🙆 21:06			
•				
Sensors				
Beacons	0.89m			
후 Wifi				
🖧 Phone Sensors	1.74m			
Мар				
Map Editor	1.06m			
📃 🛛 Map List				
Navigation	1.10m			
📓 2d Map				
3d Map(Camera)	1.19m			
	4 22m			
Control panel				

29

Map and Stream Modes

N	🍳 🕕 🔝 🎽 13:24		
GpsTrackerApp	0		
OUTDOOR	INDOOR		
Det's mo	ove		
<u> </u>			
Total duration: 32,8 sec Total distance: 45,3 m			

Stream mode

Map mode

Conclusions and Future Work

- Indoor navigation is very promising direction
- Proper signal processing allows to achieve a competitive localization accuracy
- Beacons are low cost and easy to use
- Areas of application are extensive and the market is growing

- System performance optimization
- **SLAM** technologies
- Accuracy improvements

