
TensorFlow usage

Babii Andrii

Ph.D. student, Kharkiv National University of Radioelectronics

andrii.babii@nure.ua

2

Motivation

1. Data and model parallelism

2. TensorBoard for visualization

3. Computational graph abstraction

4. Python + Numpy

5. Great documentation and examples

6. More than deep learning framework

+ Now conception of ‘Python front-end’ for hard backend is trending

TinyFlow

http://dmlc.ml/2016/09/30/build-your-own-tensorflow-with-nnvm-and-torch.html

Syntax (‘Frontend’) like TensorFlow but interpretation is … Torch!

NNVM inspired by LLVM…

It provides ways to construct, represent and transform computation graphs

invariant of how it is executed.

3

TensorFlow basic concepts

A TensorFlow computation is described by a directed graph , which is

composed of a set of nodes

Library user construct a computational graph using one of the supported

frontend languages (C++ or Python)

In a TensorFlow graph, each node has zero or more inputs and zero or

more outputs, and represents the instantiation of an operation

Values that flow along normal edges in the graph (from outputs to inputs)

are tensors - arbitrary dimensionality arrays where the underlying el-

ement type is specified or inferred at graph-construction time

Special edges, called control dependencies , can also exist in the

graph

http://download.tensorflow.org/paper/whitepaper2015.pdf

TensorFlow architecture

Python C++ …

TensorFlow core execution language

CPU GPU Android …

There is the client, which uses the session interface to communicate with

the master and one or more worker processes

Each worker process responsible for arbitrating access to one or more

computational devices (such as CPU cores and GPU cards)

TensorFlow Computation graph

https://www.tensorflow.org/

TensorFlow basic concepts. Tensor

A Tensor is a typed multi-dimensional array. For example, a 4-D array of

floating point numbers representing a mini-batch of images with dimensions

[batch, height, width, channel].

In a launched graph: Type of the data that flow between nodes.

In the Python API: class used to represent the output and inputs of ops added

to the graph tf.Tensor. Instances of this class do not hold data.

In the C++ API: class used to represent tensors returned from a Session::Run()

call tensorflow::Tensor. Instances of this class hold data.

https://www.tensorflow.org/versions/r0.9/resources/glossary.html#glossary

TensorFlow basic concepts. Operations

An operation has a name and represents an abstract computation (e.g.,

“matrix multiply”, or “add”). An operation can have attributes.

•One common use of attributes is to make operations polymorphic over

different tensor element types.

A kernel is a particular implementation of an operation that can be run on a

particular type of device (e.g., CPU or GPU).

TensorFlow binary defines the sets of operations and kernels available

via a registration mechanism, and this set can be extended by linking

in additional operation and/or kernel definitions/registration

http://download.tensorflow.org/paper/whitepaper2015.pdf

Variable is a special kind of operation that returns a handle to a persistent

mutable tensor that survives across executions of a graph.

TensoFlow built-in operations

http://download.tensorflow.org/paper/whitepaper2015.pdf

9

TensorFlow. Execution of computation graph

Single device (for example we have only one core CPU for computation)

The nodes of the graph are executed in an order that

respects the dependencies between nodes

Multi-device execution

•Select device to place the computation for each node in the graph

•Managing the required communication of data

across device boundaries implied by these

placement decisions

http://download.tensorflow.org/paper/whitepaper2015.pdf

10

TensorFlow node placement

http://download.tensorflow.org/paper/whitepaper2015.pdf

11

Cross-device communications

http://download.tensorflow.org/paper/whitepaper2015.pdf

12

TensorFlow. Extensions

•Automatic Differentiation – Automatically computes gradients for data flow graphs.

•Partial Execution – Allows TensorFlow clients to execute a subgraph of the entire

execution graph.

•Device Constraints – Allows TensorFlow clients to control the placement of nodes

on a device.

•Control Flow – Enables support for conditionals and loops in data flow graphs.

•Input Operations – Facilitate efficient loading of data into large scale models from

the storage system.

•Queues – Allow different portions of the graph to execute asynchronously and to

hand off data through Enqueue and Dequeue operation. Enqueue and Dequeue

operations are blocking.

•Containers – The mechanism within TensorFlow for managing longer-lived

mutable stat

13

TensorFlow. Session

A Session object encapsulates the environment in which Tensor objects are

evaluated - TensorFlow Docs

import tensorflow as tf

a = tf.constant(5.0)

b = tf.constant(3.0)

c = a +b

with tf.Session() as sess:

print (sess.run(c)) # print(c.eval()) – will do the same (for current opened

session)

tf.InteractiveSession()

is just convenient synonym for keeping a default session open in ipython

sess.run(c)

is an example of a TensorFlow Fetch

14

TensorFlow. Variable

Variables are in-memory buffers

containing tensors.

They must be explicitly initialized and can

be saved to disk during and after training

TensorFlow Docs

import tensorflow as tf

weights = tf.Variable(tf.random_normal([100, 150], stddev=0.5), name="weights")

biases = tf.Variable(tf.zeros([150]), name="biases")
#https://www.tensorflow.org/versions/r0.11/api_docs/python/constant_op.html#random_normal

Pin a variable to GPU.

with tf.device("/gpu:0"):

v = tf.Variable(...)

Pin a variable to a particular parameter server task.

with tf.device("/job:ps/task:7"):

v = tf.Variable(...)

variable

assign

zeros, random_normal…

15

TensorFlow. Variable

Variable initializers must be run explicitly before other ops in your model can be

run. The easiest way to do that is to add an op that runs all the variable

initializers, and run that op before using the model. - TensorFlow Docs

init_op = tf.initialize_all_variables()

saver = tf.train.Saver()

Later, when launching the model

with tf.Session() as sess:

Run the init operation.

sess.run(init_op)

...

Use the model

…

Save the variables to disk.

save_path = saver.save(sess, "/tmp/model.ckpt")

print("Model saved in file: %s" % save_path)

Or we can init variable from value of other variable (it should be initialized before):

w2 = tf.Variable(weights.initialized_value(), name="w2")

tf.train.Saver object have restore method: saver.restore(sess, "/tmp/model.ckpt")

https://www.tensorflow.org/versions/r0.11/how_tos/variables/index.html

16

TensorFlow. Common syntax examples

Fill array with zeros and ones: a = tf.zeros((3,3)), b = tf.ones((3,3))

Sum of array, axis = 1: tf.reduce_sum(a,reduction_indices=[1])

Shape of array: a.get_shape()

Re-shape: array: tf.reshape(a,(1,4))

Basic arithmetic: a*3+ 2

Multiplication: tf.matmul(c, d)

Element accessing: a[0,0], a[:,0], a[0,:]

17

TensorFlow data input

How can we input external data into TensorFlow?

Simple solution: Import from Numpy:

a = np.zeros((3,3))

ta = tf.convert_to_tensor(a)

Simple, but does not scale

18

TensorFlow data input

Use tf.placeholder variables (dummy nodes that provide entry points for data

to computational graph).

A feed_dict is a python dictionary mapping from

tf.placeholder vars (or their names) to data (numpy arrays, lists, etc.)

Example:

input1 = tf.placeholder(tf.float32)

input2 = tf.placeholder(tf.float32)

output = tf.mul(input1, input2)

with tf.Session()as sess:

print(sess.run([output], feed_dict={input1:[6.], input2:[3.]}))

19

TensorFlow data input

Evaluation:

feed_dict={input1:[6.], input2:[3.]}

input1 = tf.placeholder(tf.float32) input2 = tf.placeholder(tf.float32)

result

20

TensorFlow namespaces & get_variable

Variable Scope mechanism in TensorFlow consists of 2 main functions:

tf.get_variable(<name>, <shape>, <initializer>): Creates or returns a variable

with a given name.

tf.variable_scope(<scope_name>): Manages namespaces for names passed to

tf.get_variable().

Case 1: the scope is set for creating new variables, as evidenced by

tf.get_variable_scope().reuse == False.

tf.get_varible two cases:

Case 2: the scope is set for reusing variables, as evidenced by

tf.get_variable_scope().reuse == True.

21

Example

Problem: Linear regression
min)ˆ(

22
→−=∑∑ yye

x

x

x

x

x

Predicted value

Real value

Error = Y_predicted – Y_real

Y = X*k + b

22

Example

import numpy as np

Import tensorflow as tf

Prepre input data for regression. X from 1 to 100 with step 0.1

Y = X+ 10*cos(X/5)

X_gen = np.arange(100, step=.1)

Y_gen = X_gen + 10 * np.cos(X_gen/5)

#Number of samples. 100/0.1 = 1000

n_samples = 1000

#Batch size

batch_size = 100

#Steps number

steps_number = 400

https://github.com/anrew-git/tf_linear

23

Example

24

Example

Tensorflow is sensitive to shapes, so reshaping without data change

It were (n_samples,), now should be (n_samples, 1)

X_gen = np.reshape(X_gen, (n_samples,1))

Y_gen = np.reshape(Y_gen, (n_samples,1))

Preparing placeholders

X = tf.placeholder(tf.float32, shape=(batch_size, 1))

Y = tf.placeholder(tf.float32, shape=(batch_size, 1))

25

Example

Define variables to be learned

with tf.variable_scope("linear-regression"):

k = tf.get_variable("weights", (1, 1),

initializer=tf.random_normal_initializer())

b = tf.get_variable("bias", (1,),

initializer=tf.constant_initializer(0.0))

y_predicted = tf.matmul(X, k) + b

loss = tf.reduce_sum((Y - y_predicted)**2)

26

Example

Sample code to solve this problem

Define optimizer properties – optimization type – minimization, variable

opt_operation = tf.train.AdamOptimizer().minimize(loss)

with tf.Session() as sess:

Initialize Variables in graph

sess.run(tf.initialize_all_variables())

Optimization loop for steps_number steps

for i in range(steps_number):

Select random minibatch

indices = np.random.choice(n_samples, batch_size)

X_batch, y_batch = X_gen[indices], Y_gen[indices]

Do optimization step

sess.run([opt_operation, loss],

feed_dict={X: X_batch, Y: y_batch})

27

Example

Gradient descent loop for steps_number steps

for i in range(steps_number):

Select random minibatch

batch_indices = np.random.choice(n_samples, batch_size)

X_batch, y_batch = X_gen[batch_indices], Y_gen[batch_indices]

Do optimization step

sess.run([opt_operation, loss],

feed_dict={X: X_batch, Y: y_batch})

Preparing mini-batches

Inside sess.run – feed data to TensorFlow

28

Example

feed_dict={X: X_batch, Y: y_batch})

y_predicted = tf.matmul(X, k) + b

loss = tf.reduce_sum((Y - y_predicted)**2)

k = tf.get_variable("weights", (1, 1),

initializer=tf.random_normal_initializer())

b = tf.get_variable("bias", (1,),

initializer=tf.constant_initializer(0.0))

29

Example

30

TensorFlow auto-differentiation and gradient

Automatic differentiation computes gradients without user input

TensorFlow nodes in computation graph have attached gradient operations.

Use backpropagation (using node-specific gradient ops) to compute required

gradients for all variables in graph

31

TensorFlow

1. TensorFlow has good computational graph visualization.

2. Support from such a huge company as Google is a plus for TensorFlow.

3. TensorFlow has C++ and Python interfaces.

4. TensorFlow has benefits on large computation problems and distributed

heterogeneus computation enviroment

5. TensorFlow not so good on 1-GPU / single host hardware as Theano/Torch

6. TensorFlow base can be extended to the wide range of new hardware

32

References

1. http://download.tensorflow.org/paper/whitepaper2015.pdf

2. https://www.tensorflow.org/

3. Getting Started with TensorFlow by Giancarlo Zaccone

4. TensorFlow Machine Learning Cookbook Paperback by Nick McClure

5. https://github.com/aymericdamien/TensorFlow-Examples

6. https://www.tensorflow.org/versions/r0.10/tutorials/index.html

7. http://bcomposes.com/2015/11/26/simple-end-to-end-tensorflow-examples/

8. https://github.com/anrew-git/tf_linear

9. Основные концепции нейронных сетей. Р. Каллан

33

Questions?

