
The Splendors and 
Miseries of Tensorflow

Oleksandr Khryplyvenko  
sept. 2016

Ph.D. Student at IMMSP NASU 
m3oucat@gmail.com

License: BSD

mailto:m3oucat@gmail.com


Briefly about myself and how I met tf
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I use ML for(order matters):



For whom and what it covers

There are lots of related pages on the internet, 
but I’m telling here only about the things I’ve used.
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Imagine that you spent 2 years on intensive ML(more research, less - production)

Here’s brief of these 2 years related to frameworks 

I’ll will:

• compare TF with other frameworks 
• tell about pros and cons of TF 
• do some mathematics TF is based on (so are other frameworks too) 
• tell about installation & usage nuances 
• show how to debug(with a demo)



TF Theano Torch Caffe CNTK

prog 
language

python/C++ python/C++ lua/C C++/python
specific 

language
the way 
∂ƒ(x)/∂x 

calculated

symbolic symbolic
automatic 

*,***
no automatic

cluster yes no yes yes** yes

quality of doc, 
samples

excellent good good poor poor

community  
help

guarranteed 
(up to 1 day)

not 
guaranteed

middle Not used Not used

core/API 
code 

complexity

easy cryptic good hard Not used

I used ≈ 1 yr 6 months 6 months <1 month < 1 month

https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software 

TF & other ML frameworks
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https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software


*http://dmlc.ml/2016/09/30/build-your-own-tensorflow-with-nnvm-and-torch.html

**https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems-based-on-intel-xeon-processor-e5

https://indico.io/blog/the-good-bad-ugly-of-tensorflow/ 

***https://github.com/twitter/torch-autograd 
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http://dmlc.ml/2016/09/30/build-your-own-tensorflow-with-nnvm-and-torch.html
https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems-based-on-intel-xeon-processor-e5
https://indico.io/blog/the-good-bad-ugly-of-tensorflow/
https://github.com/twitter/torch-autograd


Baby-steps TF cons(immature)

- TF is not the fastest at the moment. But it’s getting faster each release 
- lots of reported & unreported issues. Be gentoo-way! 
- syntax sugar-free. But it’s getting better each release.(example - slices on vars) 
- can’t modify existing graph 
- does not automatically simplify graph: ca + cb -> c(x+y)
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Resume: it’s not always the choice for production yet



- fast coding 
- easy understandable and scalable code 
- symbolic computation
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- Google dataset pretrained models(use or fine tune)

TF pros, that won’t be beaten
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Torch Theano Tensorflow
- fundamental  

torch7: 1073 commits, 105 contributors  
theano: 23636 commits, 258 contributors  
tensorflow: 8603 commits, 430 contributors  
TF exists only a year. Theano - more than 6 yrs. Torch - 14 years

- parallelisation. It’s simple. 
https://www.tensorflow.org/versions/r0.11/how_tos/distributed/index.html 

- Virtually any architecture may be implemented

commitsk
yearsk

/ commitsi
i=(torch,theano,tensorflow)

∑ / yearsi

Resume: It’s THE choice for research/startup/perspective

https://research.googleblog.com/2016/03/train-your-own-image-classifier-with.html 

https://www.tensorflow.org/versions/r0.9/how_tos/image_retraining/index.html 

https://www.tensorflow.org/versions/r0.11/how_tos/distributed/index.html
https://research.googleblog.com/2016/03/train-your-own-image-classifier-with.html
https://www.tensorflow.org/versions/r0.9/how_tos/image_retraining/index.html
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Benefits: 
- simpler automatic differentiation 
- easier parallelisation 
- differentiation of graph produces graph, so you can get 

high order derivatives for no cost(PROFIT!!!) 
You say how to symbolically compute the gradient for an op when you make a new op 
in tf - single method @ops.RegisterGradient("MyOP")

Symbolic computations

• You don’t actually compute. You just say how to compute 
• You can think of it as meta programming 
• Symbolic computation shows how to get symbolic (common, analytical) solution 
• by substituting  numerical values to vars, you obtain partial numerical solutions

Symbolic: c = a + b given a=…, b=…  
Numerical: 7 = 3 + 4
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Symbolic computations. TF sample

(a-b)+ cos(x)

/gpu:0
+

/cpu:0
cos

/gpu:0
-

/cpu:0
x

/gpu:0
a

/gpu:0
b

import tensorflow as tf 
import numpy as np  
 
with tf.device('/cpu:0'):  
    x = tf.constant(np.ones((100,100))) 
    y = tf.cos(x) 
 
with tf.device('/gpu:0'):  
    a = tf.constant(np.zeros((100,100))) 
    b = tf.constant(np.ones((100,100))) 
    result = a-b+y 
 
tf_session = tf.Session( 
                 config=tf.ConfigProto( 
                      log_device_placement=True 
                 ) 
             ) 
writer = tf.train.SummaryWriter( 
    “/tmp/trainlogs2", 
    tf_session.graph 
) 

# then run 
# tensorboard —-logdir=/tmp/trainlogs2 in shell, 
# go to the location suggested by tensorboard, 
# `graphs` tab, click on each node/leaf, 
# and check where it has been placed



Automatic differentiation
Automatic differentiation is based on chain rule:

http://colah.github.io/posts/2015-08-Backprop/ 

∂E(ƒ(w)) 
      ∂w

∂E(ƒ(w)) 
∂ƒ(w)

∂ƒ(w) 
∂w

But f(w) not depend directly on w, 
it may depend on g(w)… 

In TF it’s much more convenient than in Torch or Theano
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You can think of TF op = torch layer (in terms of automatic differentiation)

• Allows us to compute partial derivatives of objective function with respect to each 
free parameter in one pass. 

• Efficient when # of objective functions is small

http://colah.github.io/posts/2015-08-Backprop/


Installation

Switch off UEFI safe boot (Linux, needed to installproprietary drivers)

Install Drivers(nvidia proprietary)(Linux)

Install CUDA
# dpkg -i <your downloaded cuda.deb>; apt-get update; apt-get install cuda

Install CUDNN (need nvidia developer account, takes you up to 1 day to get)

install tensorflow

pip (trivial)

from sources(you’re getting the most recent fixes)
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some video cards don’t use custom fan speed 
# nvidia-xconfig —cool-bits=4 

then you can use cooling ! 
# nvidia-settings -a [gpu:0]/GPUFanControlState=1 -a [fan:0]/GPUTargetFanSpeed=80

Usage tips
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Debugging. Why?

Your bugs: 
- tensor shape mismatch 
- OOM 
- wrong calculation graphs 
- gradients (numerical, BPTT stability) 
- visual debug: agent behaviour 

Developers’ bugs: 
- something works not as expected 
- your code doesn’t work after update

There are no programs without bugs. Period.
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You haven’t used ipdb

CORAL!!!



Debugging. Your bugs.
Shape mismatch, virtually all bugs: 
import ipdb; ipdb.set_trace() # sometimes in catch 
ipdb> session.graph.get_tensor_by_name(‘node_path’).op.<press TAB in ipdb!!! ;)> 
ipdb> <tensor/op>.get_shape() 

Check devices: 
tf_session = tf.Session(config=tf.ConfigProto(log_device_placement=True)) 

Check/simplify graph(tensorboard): 
writer = tf.train.SummaryWriter("/tmp/trainlogs", self.tf_session.graph) 
$ tensorboard --logdir=/tmp/trainlogs 

Use variable scope! easier code, easier debug!  
you can think of TF graph as a parallel program, accessible through tf.Session() object 

OOM 
- check size of your variables or 
- change memory usage strategy: 

config = tf.ConfigProto() 
config.gpu_options.allow_growth = True 
self.tf_session = tf.Session(config=config) 

Check gradients numerically 

Check if gradients vanish/explode over time(especially for RNNs) 13/20



Debugging. Your bugs. Advanced.

- when tensorboard failed due to large/inconsistent/whatsoever graph 

- or you’re too lazy/need a quick glance

https://github.com/oleksandr-khryplyvenko/tf-graph-visualiser 
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Assuming, that tf_session is a tf.Session() object. 

ipdb> node_to_display = tf_session.graph.get_tensor_by_name('softmax:0') 
ipdb> from nodedisplay import draw 
ipdb> draw(node_to_display, tf_session, 'inception_v3_net') 

After this, you'll get $HOME/inception_v3_net.svg file

https://github.com/oleksandr-khryplyvenko/tf-graph-visualiser
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Debugging. Your bugs. Advanced.

Much bigger for real nets



Debugging. Artillery.

If you suspect bug in Master(unlikely but possible): 

$ cd tensorflow; git pull origin master 
Then rebuild pip package & reinstall. 
 
If something breaks, use google. Very often you just need to reinstall some package tf depends on. 

If this hasn’t helped, try to solve/hotfix this problem on your own. 
The code is pretty simple, up to platform specific prototypes. 
Hasn’t helped? Post a bug. And rollback meanwhile, if possible.
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Debugging. Advanced. RNN stability.

Goal: get and visualise gradients for BPTT 

Theano:

https://groups.google.com/forum/?hl=en#!topic/theano-users/lTVpc4XD8C8  
https://stackoverflow.com/questions/32553374/how-can-i-get-not-only-an-unrolled-for-k-steps-truncated-bptt-grad-in-theano-sc 
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https://groups.google.com/forum/?hl=en#!topic/theano-users/lTVpc4XD8C8
https://stackoverflow.com/questions/32553374/how-can-i-get-not-only-an-unrolled-for-k-steps-truncated-bptt-grad-in-theano-sc


18/20

Debugging. Advanced. RNN stability.

Surprise! Only predefined initialisers, 
matrix is glued

def _linear(args, output_size, bias, bias_start=0.0, scope=None):  
    """Linear map: sum_i(args[i] * W[i]), where W[i] is a variable.””” 

  shapes = [a.get_shape().as_list() for a in args] 
  for shape in shapes: 
      total_arg_size += shape[1] 
   
  with vs.variable_scope(scope or "Linear"): 
      matrix = vs.get_variable("Matrix", [total_arg_size, output_size]) 
      res = math_ops.matmul(array_ops.concat(1, args), matrix) 
      bias_term = vs.get_variable( 
      "Bias", [output_size], initializer=init_ops.constant_initializer(bias_start)) 
 
  return res + bias_term 

class BasicRNNCell(RNNCell): 
def __call__(self, inputs, state, scope=None): 
  """Most basic RNN: output = new_state = activation(W * input + U * state + B).""" 
  with vs.variable_scope(scope or type(self).__name__):  # "BasicRNNCell" 
    output = self._activation(_linear([inputs, state], self._num_units, True))  
  return output, output
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Don’t care. In TF, you can always take 

Debugging. Advanced. RNN stability.

def separate_linear(args, argnames, output_size, bias, bias_start=0.0, scope=None, initializers=None): 
  with tf.variable_scope(scope or "SeparateLinear"):  
    arg, shape, matrixname, initializer = args[0], shapes[0], argnames[0], initializers[0]  
    matrix = tf.get_variable(matrixname, [shape[1], output_size], initializer=initializer) 
    res = tf.matmul(arg, matrix) 
 
    for arg, shape, matrixname, initializer in zip(args, shapes, argnames, initializers)[1:]: 
        matrix = tf.get_variable(matrixname, [shape[1], output_size], initializer=initializer) 
        res += tf.matmul(arg, matrix) 
 
    if bias: 
        res += tf.get_variable(“Bias", [output_size], initializer=tf.constant_initializer(bias_start)) 
 
return res 

class CustomInitializerBasicRNNCell(tf.nn.rnn_cell.BasicRNNCell): 
    def __call__(self, inputs, state, scope=None): 
        """Most basic RNN: output = new_state = tanh(W * input + U * state + B).""" 
        with tf.variable_scope(scope or type(self).__name__):  
            output = tf.tanh( 
                separate_linear.separate_linear( 
                    [inputs, state], 
                    ["Win", "Wrec"], 
                    self._num_units, 
                    True,  
                    initializers=[ 
                        tf.random_uniform_initializer(minval=-tf.sqrt…, maxval= ), # Input matrix 
                        tf.random_uniform_initializer()                            # Recurrent matrix 
                    ] 
                ) 
            ) 
        return output, output 



20/20

most recent100 steps backwards

© Artem Chernodub

Debugging. Advanced. RNN stability.
Now we have separate Win, Wrec, custom-initialized




