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Deep Learning Successes

Images
Year Error rate

2011 26.2%

2012 15.3%

2015 4.8%

Human 5.1%

ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC)

Speech
Year Error rate

2004 15%

2011 12%

2015 8%

Human 4%

Word error rate on 
the Switchboard task (IBM)



  

“Deep Learning” – Deep Buzzword

● Used to be called “neural networks” in the 90s, before they 
were over-hyped and rejected by a research community 
who hates hype.

● Old buzzwords get replaced by new buzzwords.
Now called, “deep learning,” “computational networks,” etc.

● (Although, some “deep” algorithms are extensions of non-
NN models.)



  

What’s different now?
● Moore’s law

– 10,000-fold more computing power (!)

● More data
● More experience with NN algorithms
● New ideas, extensions, tricks



  

What is Deep Learning?
● Multiple “shallow” models stacked on top of 

each other.
● Internal representations develop at the 

boundaries of the models.
● At each step, the shallow model transforms its 

input into a different representation.



  

Shallow Learning

● Works very well, given appropriate inputs
● Logistic regression

– Uses linear combination of inputs: 
f() = a + bx + cy + dz + …

        (the dot product)

– Requires linearly separable
input features.



  

Learning
● How does each 

parameter affect
the output?

● Trial and error?
● Genetic algorithm?

● Calculus!



  

Gradient Descent
● Modify parameters in the direction of the 

derivative (“gradient”)
● Any function which is differentiable can be used

in a computational network.



  

Gradient Descent
● Follow the derivative! 
● But how far?
● Crazy, stupid idea:

– Bigger derivative, bigger change in weight.



  

Stochastic GD
● We meander like a drunk. Unafraid.
● Mini-batches give

bad gradients.
● Large learning rate

shoots past optimum.
● Drop-out temporarily

breaks some neurons.



  

Overfitting, Data, and Tricks
● Don't be too smart.

Ignorance is creativity.
● More data always helps.

– Fake it (augmentation).

● Reduce number of parameters.
● Be more stochastic.
● Multi-task learning.



  

Deep Neural Network



  

Common Tasks
--

Building Blocks



  

Regression
● Approximate some function.
● Objective function: mean square error



  

Classification
● Categorical prediction
● We get the posterior probability

● Sound/image classification (cats, phonemes)
● Language modeling (predict next word)

P( C | X )



  

“Compression”
● Auto-encoder
● Creates a compressed

internal representation
● (Unsupervised)



  

Embedding
● DSSM/

Siamese net
● Unsupervised
● Constructs

a semantic
space where
points have
meaning.



  

Embedding
● Search/comparison
● Transformation

– Images to captions

● Using the embedding as features to train a 
different (often, simpler) model.

● DSSM allows using a lightly-supervised 
dataset.



  

Architectures



  

Feed-forward NN (DNN)

● Simple, one-shot processing
● Work well



  

Convolutional NN (CNN)

● Re-use of blueprints.
● Better 

generalization
● Less over-fitting
● Each parameter 

trains on 
many more 
examples



  

Recurrent NN (RNN)

● Short-term memory
● Also re-uses parameters



  

LSTM RNN

● Medium-term memory
● Fixes the partial derivatives
● Makes changes to parameters

more stable.



  

Activation Functions 
(Neuron Types)

● Sigmoid, Tanh
● Rectifier
● Max-Out
● Leaky, Programmable Rectifier Linear
● LSTM



  

Artificial
Neuroscience



  

Individual Neurons are Detectors
● Object Detectors Emerge in Deep Scene CNNs 

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba
CVPR 2015

● Monitor which neurons activate, and trace back 
through the convolutional layers which region of the 
image contributed to its activation.



  

Pool5, unit 13; Label: Lamps; Type: object; Precision: 84%

Annotating the Semantics of Units



  



  



  

Understanding Deep Image Representations by 
Inverting Them

Aravindh Mahendran, Andrea Vedaldi

Inverting CNNs



  



  

Snow Crash
● Deep Neural Networks are Easily Fooled: High Confidence 

Predictions for Unrecognizable Images
Anh Nguyen, Jason Yosinski, Jeff Clune



  

Snow Crash
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