Deep Learning Fundamentals and **Emerging Trends**

Deep Learning Successes

Images

Year	Error rate		
2011	26.2%		
2012	15.3%		
2015	4.8%		
Human	5.1%		

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

Year	Error rate		
2004	15%		
2011	12%		
2015	8%		
Human	4%		

Word error rate on the Switchboard task (IBM)

"Deep Learning" – Deep Buzzword

- Used to be called "neural networks" in the 90s, before they were over-hyped and rejected by a research community who hates hype.
- Old buzzwords get replaced by new buzzwords. Now called, "deep learning," "computational networks," etc.
- (Although, some "deep" algorithms are extensions of non-NN models.)

What's different now?

- Moore's law
 - 10,000-fold more computing power (!)
- More data
- More experience with NN algorithms
- New ideas, extensions, tricks

What is Deep Learning?

- Multiple "shallow" models stacked on top of each other.
- Internal representations develop at the boundaries of the models.
- At each step, the shallow model transforms its input into a different representation.

Shallow Learning

- Works very well, given appropriate inputs
- Logistic regression
 - Uses linear combination of inputs: f() = a + bx + cy + dz + ...(the dot product)
 - Requires linearly separable input features.

Learning

- How does each parameter affect the output?
- Trial and error?
- Genetic algorithm?

Calculus!

Gradient Descent

- Modify parameters in the direction of the derivative ("gradient")
- Any function which is differentiable can be used in a computational network.

Gradient Descent

- Follow the derivative!
- But how far?
- Crazy, stupid idea:
 - Bigger derivative, bigger change in weight.

Stochastic GD

- We meander like a drunk. Unafraid.
- Mini-batches give bad gradients.
- Large learning rate shoots past optimum.
- Drop-out temporarily breaks some neurons.

Overfitting, Data, and Tricks

- Don't be too smart.
 Ignorance is creativity.
- More data always helps.
 Fake it (augmentation).
- Reduce number of parameters.
- Be more stochastic.
- Multi-task learning.

Deep Neural Network

Common Tasks

Building Blocks

Regression

- Approximate some function.
- Objective function: mean square error

Classification

- Categorical prediction
- We get the posterior probability

P(C | X)

- Sound/image classification (cats, phonemes)
- Language modeling (predict next word)

"Compression"

- Auto-encoder
- Creates a compressed internal representation
- (Unsupervised)

Embedding

- DSSM/ Siamese net
- Unsupervised
- Constructs

 a semantic
 space where
 points have
 meaning.

Embedding

- Search/comparison
- Transformation
 - Images to captions
- Using the embedding as features to train a different (often, simpler) model.
- DSSM allows using a lightly-supervised dataset.

Architectures

Feed-forward NN (DNN)

Simple, one-shot processing

Work well

Convolutional NN (CNN)

- <u>Re-use of blueprints.</u>
- Better generalization
- Less over-fitting
- Each parameter trains on many more examples

Recurrent NN (RNN)

<u>Short-term memory</u>

• Also re-uses parameters

LSTM RNN

- Medium-term memory
- Fixes the partial derivatives
- Makes changes to parameters more stable.

Activation Functions (Neuron Types)

- Sigmoid, Tanh
- Rectifier
- Max-Out
- Leaky, Programmable Rectifier Linear
- LSTM

Artificial Neuroscience

Individual Neurons are Detectors

- Object Detectors Emerge in Deep Scene CNNs Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba CVPR 2015
- Monitor which neurons activate, and trace back through the convolutional layers which region of the image contributed to its activation.

Estimating the Receptive Fields

Segmentation using the RF of Units

More semantically meaningful

Annotating the Semantics of Units

Pool5, unit 13; Label: Lamps; Type: object; Precision: 84%

Distribution of Semantic Types at Each Layer

Inverting CNNs

Understanding Deep Image Representations by Inverting Them Aravindh Mahendran, Andrea Vedaldi

Snow Crash

• Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images Anh Nguyen, Jason Yosinski, Jeff Clune

Snow Crash

parot	coffee pot	race car	sea
toucan	cup	racer	seashore
ocarina	coffee mug	sports car	pier
pinwheel	water jug	car whee	sandbar
		Y	
black panther	fly	red crayon	latte
mask	ground beetle	syringe	cup
mouse	fly	lipstick	CD player
loupe	rhinoceros beetle	maraca	stethoscope
	Sync.	Vords Captions Automated	