
Gardener’s advice: how to
grow parse trees

Mariana Romanyshyn
Computational Linguist
at Grammarly

Natural Language Processing

•  Machine Translation
•  Event Extraction
•  Sentiment Analysis
•  Error Correction
•  Automatic Summarization
•  Question Answering

Prerequisites
•  Sentence Detection
•  Tokenization
•  Lemmatization/Stemming
•  Part-of-speech Tagging
•  Named Entity Recognition
•  Parsing (Syntactic Analysis)
•  Coreference Resolution
•  Relationship Extraction
•  Word Sense Disambiguation

For example… (1)

 BadCompany Inc., a high-flying company,
filed a suit for $1.5B against PoorCompany
Corp. and their investor, GoodCompany & Co.
The company will take them to court on
May 16, 2014.

For example… (2)
=> Sentence Detection

BadCompany Inc., a high-flying company, filed a
suit for $1.5B against PoorCompany Corp. and
their investor, GoodCompany & Co.

The company will take them to court on May 16,
2014.

For example… (3)
=> Tokenization

[“BadCompany” “Inc.” “,” “a” “high-flying”
“company” “,” “filed” “a” “suit” “for” “$” “1.5” “B”
“against” “PoorCompany” “Corp.” “and” “their”
“investor” “,” “GoodCompany” “&” “Co.” “The”
“company” “will” “take” “them” “to” “court” “on”
“May” “16” “,” “2014” “.”]

For example… (4)
=> Lemmatization

[“BadCompany” “Inc.” “,” “a” “high-flying”
“company” “,” “file” “a” “suit” “for” “$” “1.5” “B”
“against” “PoorCompany” “Corp.” “and” “their”
“investor” “,” “GoodCompany” “&” “Co.” “The”
“company” “will” “take” “them” “to” “court” “on”
“May” “16” “,” “2014” “.”]

For example… (5)
=> POS tagging

[“BadCompany”/NNP “Inc.”/NNP “,”/|,| “a”/DT “high-
flying”/JJ “company”/NN “,”/|,| “filed”/VBD “a”/DT
“suit”/NN “for”/IN “$”/$ “1.5”/CD “B”/CD “against”/IN
“PoorCompany”/NNP “Corp.”/NNP “and”/CC “their”/PRP
$ “investor”/NN “,”/|,| “GoodCompany”/NNP “&”/CC
“Co.”/NNP]

[“The”/DT “company”/NN “will”/MD “take”/VB “them”/
PRP “to”/TO “court”/NN “on”/IN “May”/NNP “16”/CD
“,”/|,| “2014”/CD “.”/|.|]

For example… (6)
=> Named Entity Recognition

[“BadCompany”/NNP “Inc.”/NNP “,”/|,| “a”/DT “high-
flying”/JJ “company”/NN “,”/|,| “filed”/VBD “a”/DT
“suit”/NN “for”/IN “$”/$ “1.5”/CD “B”/CD “against”/IN
“PoorCompany”/NNP “Corp.”/NNP “and”/CC “their”/PRP
$ “investor”/NN “,”/|,| “GoodCompany”/NNP “&”/CC
“Co.”/NNP]

[“The”/DT “company”/NN “will”/MD “take”/VB “them”/
PRP “to”/TO “court”/NN “on”/IN “May”/NNP “16”/CD
“,”/|,| “2014”/CD “.”/|.|]

For example… (7)
=> Sentence Parsing

(TOP
 (S
 (NP (DT The) (NN company))
 (VP (MD will)
 (VP (VB take)
 (NP (PRP them))
 (PP (TO to)
 (NP (NN court)))
 (PP (IN on)
 (NP (NNP May) (CD 16) (, ,) (CD 2014)))))
 (. .)))

For example… (8)
=> Coreference resolution

BadCompany Inc., a high-flying company, filed a suit for
$1.5B against PoorCompany Corp. and their investor,
GoodCompany & Co. The company will take them to court
on May 16, 2014.

BadCompany Inc. => their, company
PoorCompany Corp. => them
GoodCompany & Co. => them

For example… (9)
=> Relationship Extraction

BadCompany Inc., a high-flying company, filed a suit for $1.5B
against PoorCompany Corp. and their investor, GoodCompany &
Co. The company will take them to court on May 16, 2014.

Suit: suer - BadCompany Inc.
 defendant - PoorCompany Corp.
 defendant - GoodCompany & Co.
 sum - $1.5B
 date - May 16, 2014

(investorOf: GoodCompany & Co., BadCompany Inc.)

For example… (10)
=> Word Sense Disambiguation

BadCompany Inc., a high-flying company, filed a suit for $1.5B
against PoorCompany Corp. and their investor, GoodCompany &
Co. The company will take them to court on May 16, 2014.

Suit, n:
- a set of clothes made from the same cloth
- a claim or complaint that someone makes
 in a court of law
- one of four sets of playing cards that together
 make a pack
- someone who works in an office and wears a suit

Sentence Parsing

 Parsing – a method of understanding the
meaning of a sentence.

Sentence Parsing

 Parsing – a method of understanding the
meaning of a sentence.

What’s a sentence?

What’s a sentence?

•  Colorless green ideas sleep furiously.
•  Furiously sleep ideas green colorless.

Noam Chomsky

What’s a sentence?

•  Colorless green ideas sleep furiously.
•  Furiously sleep ideas green colorless.

Noam Chomsky

Relations!

Where do we get info on
relations?

Languages: analytic or synthetic?

Analytic:
•  word order
•  additional words
•  mostly uninflected

Synthetic:
•  lots of affixes
•  word order is

less important

Types of Parsers

•  Constituency Parser
•  Dependency Parser

And both of them use
GRAMMAR!

Constituency Parse Tree

Dependency Parse Tree

Context-Free Grammar
 G = (N, ∑, R, S), where

N – a final set of non-terminal symbols
 {NP, VP, PP, S, SQ, SBAR, SBARQ …}
∑ – a final set of terminal symbols
 {NN, NNS, VB, VBZ, VBD, IN, TO, |,| …}
R – a finite set of rules
S – a start symbol for each tree (TOP/ROOT/S1)

Rules
α -> β, where α ∈ N and β ∈ (N ∪ ∑)+

S -> S CC S
S -> NP VP |.|
S -> NP VP
NP -> NP SBAR
NP -> NP PP
NP -> NN NN
NP -> NN

NP -> DT NN
VP -> VBP VP
VP -> VBZ PP
VP -> VBD NP
VP -> VBN
VP -> VBZ
VP -> VB

Probabilistic Context-Free
Grammar

S -> S CC S [0.2]
S -> NP VP |.| [0.6]
S -> NP VP [0.2]
NP -> NP SBAR [0.1]
NP -> NP PP [0.3]
NP -> NN NN [0.15]
NP -> NN [0.15]

NP -> DT NN [0.3]
VP -> VBP VP [0.2]
VP -> VBZ PP [0.1]
VP -> VBD NP [0.1]
VP -> VBN [0.2]
VP -> VBZ [0.3]
VP -> VB [0.1]

Lexicalized Grammars
Every rule has one special child – its head.

Context-Sensitive Grammar

Rules are of the form:
αAβ -> αγβ,

where:
•  A ∈ N
•  γ ∈ (N ∪ ∑)+
•  α, β ∈ (N ∪ ∑)*

How do we process rules?

•  CKY algorithm (bottom-up)
•  Earley algorithm (top-down)
•  GLR algorithm (bottom-up)
•  Recursive ascent algorithm (bottom-up)
•  Recursive descent algorithm (top-down)
•  Etc…

CKY (the Cocke–Kasami–
Younger algorithm)

Sentence: Interest rates fall by 5 points

CKY (the Cocke–Kasami–
Younger algorithm)

Sentence: Interest rates fall by 5 points

CKY (the Cocke–Kasami–
Younger algorithm)

Sentence: Interest rates fall by 5 points

CKY (the Cocke–Kasami–
Younger algorithm)

Sentence: Interest rates fall by 5 points

CKY (the Cocke–Kasami–
Younger algorithm)

Θ(n3*G), where
•  n – length of the string
•  G – no. of rules

Uses Chomsky Normal Form:
A -> a or A -> B C,

where
•  A, B, C ∈ N
•  a ∈ ∑

What about grammar-free
parsers?

History-based models:
a tree is a sequence of decisions

The Most Famous Parsers

•  BUBS (35 sents/sec)
•  Zpar (24 sents/sec)
•  OpenNLP (16 sents/sec)
•  Berkeley (3.8 sents/sec)
•  Stanford (2.3 sents/sec)
•  Charniak (1.7 sents/sec)
•  Enju (1.1 sents/sec)

Speed wise!

The Most Famous Parsers

•  Zpar (~89%)
•  Berkeley (~88%)
•  OpenNLP (~88%)
•  Charniak (~87%)
•  Stanford (~86%)
•  Enju (~86%)
•  BUBS (~83%)

Accuracy wise!

Tricky Cases

I shot an elephant in my pyjamas.
P. S. How he got into my pyjamas I'll never

know.

Stanford says…

Tricky Cases

Enraged cow injures farmer with ax.

Stanford says…

Tricky Cases

I once saw a deer riding my bicycle.

Stanford says…

Tricky Cases

Wanted: a nurse for a baby about twenty
years old.

Stanford says…

Tricky Cases

We saw her duck.

Stanford says…

Tricky Cases

I'm glad I'm a man, and so is Lola.

Stanford says…

Tricky Cases

Turn right here.

Stanford says…

Tricky Cases

Buffalo buffalo Buffalo buffalo buffalo
buffalo Buffalo buffalo.

Stanford says… WHAT?

What it should have been…

Questions?

